48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurotoxicity is a term used to describe neurophysiological changes caused by exposure to toxic agents. Such exposure can result in neurocognitive symptoms and/or psychiatric disturbances. Common toxic agents include heavy metals, drugs, organophosphates, bacterial, and animal neurotoxins. Among heavy metal exposures, lead exposure is one of the most common exposures that can lead to significant neuropsychological and functional decline in humans. In this review, neurotoxic lead exposure's pathophysiology, etiology, and epidemiology are explored. In addition, commonly associated neuropsychological difficulties in intelligence, memory, executive functioning, attention, processing speed, language, visuospatial skills, motor skills, and affect/mood are explored.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lead poisoning.

            Understanding of lead toxicity has advanced substantially over the past three decades, and focus has shifted from high-dose effects in clinically symptomatic individuals to the consequences of exposure at lower doses that cause no symptoms, particularly in children and fetuses. The availability of more sensitive analytic methods has made it possible to measure lead at much lower concentrations. This advance, along with more refined epidemiological techniques and better outcome measures, has lowered the least observable effect level until it approaches zero. As a consequence, the segment of the population who are diagnosed with exposure to toxic levels has expanded. At the same time, environmental efforts, most importantly the removal of lead from gasoline, have dramatically reduced the amount of lead in the biosphere. The remaining major source of lead is older housing stock. Although the cost of lead paint abatement is measured in billions of dollars, the monetized benefits of such a Herculean task have been shown to far outweigh the costs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report.

              To determine whether the effects of low-level lead exposure persist, we reexamined 132 of 270 young adults who had initially been studied as primary school-children in 1975 through 1978. In the earlier study, neurobehavioral functioning was found to be inversely related to dentin lead levels. As compared with those we restudied, the other 138 subjects had had somewhat higher lead levels on earlier analysis, as well as significantly lower IQ scores and poorer teachers' ratings of classroom behavior. When the 132 subjects were reexamined in 1988, impairment in neurobehavioral function was still found to be related to the lead content of teeth shed at the ages of six and seven. The young people with dentin lead levels greater than 20 ppm had a markedly higher risk of dropping out of high school (adjusted odds ratio, 7.4; 95 percent confidence interval, 1.4 to 40.7) and of having a reading disability (odds ratio, 5.8; 95 percent confidence interval, 1.7 to 19.7) as compared with those with dentin lead levels less than 10 ppm. Higher lead levels in childhood were also significantly associated with lower class standing in high school, increased absenteeism, lower vocabulary and grammatical-reasoning scores, poorer hand-eye coordination, longer reaction times, and slower finger tapping. No significant associations were found with the results of 10 other tests of neurobehavioral functioning. Lead levels were inversely related to self-reports of minor delinquent activity. We conclude that exposure to lead in childhood is associated with deficits in central nervous system functioning that persist into young adulthood.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                2 January 2014
                : 2014
                : 840547
                Affiliations
                1Department of Neurology, University of Kentucky College of Medicine, 740 S. Limestone, Lexington, KY 40536, USA
                2Department of Psychology, University of Kentucky College of Arts and Sciences, 106b Kastle Hall, Lexington, KY 40506, USA
                Author notes
                *Dong Y. Han: d.han@ 123456uky.edu

                Academic Editor: Vecihi Batuman

                Article
                10.1155/2014/840547
                3909981
                24516855
                acd375ed-7102-4dce-a78d-0fa70841fc7a
                Copyright © 2014 Lisa H. Mason et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 April 2013
                : 9 October 2013
                : 14 October 2013
                Categories
                Review Article

                Comments

                Comment on this article