68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stratified active archaeal communities in the sediments of Jiulong River estuary, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here the composition of total and active archaeal communities in a sediment core of Jiulong River estuary at Fujian Province, Southern China was reported. Profiles of CH 4 and SO 2− 4 concentrations from the sediment core indicated the existence of a sulfate-methane transition zone (SMTZ) in which sulfate reduction-coupled anaerobic oxidation of methane (AOM) occurs. Accordingly, three sediment layers (16–18.5 cm, 71–73.5 cm, and 161–163.5 cm) from the 1.2 m sediment core were sectioned and named top, middle and bottom, respectively. Total DNA and RNA of each layer were extracted and used for clone libraries and sequence analysis of 16S rRNA genes, the reverse transcription (RT)-PCR products of 16S rRNA and methyl CoM reductase alpha subunit ( mcrA) genes. Phylogenetic analysis indicated that archaeal communities of the three layers were dominated by the Miscellaneous Crenarchaeotal Group (MCG) whose ecological functions were still unknown. The MCG could be further divided into seven subgroups, named MCG-A, B, C, D, E, F, and G. MCG-A and MCG-G were the most active groups in the estuarine sediments. Known anaerobic methanotrophic archaea (ANMEs) were only found as minor components in these estuarine archaeal communities. This study, together with the studies of deep subsurface sediments, would be a very good start point to target and compare the specific active archaeal groups and their roles in the dark, deep subsurface sediment environments.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin.

            The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied >2,800 clones possessing partial sequences (400-500 bp) of the 16S rRNA gene and 348 representative clone sequences (approximately 1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth's essential biogeochemical processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru.

              Studies of deeply buried, sedimentary microbial communities and associated biogeochemical processes during Ocean Drilling Program Leg 201 showed elevated prokaryotic cell numbers in sediment layers where methane is consumed anaerobically at the expense of sulfate. Here, we show that extractable archaeal rRNA, selecting only for active community members in these ecosystems, is dominated by sequences of uncultivated Archaea affiliated with the Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group, whereas known methanotrophic Archaea are not detectable. Carbon flow reconstructions based on stable isotopic compositions of whole archaeal cells, intact archaeal membrane lipids, and other sedimentary carbon pools indicate that these Archaea assimilate sedimentary organic compounds other than methane even though methanotrophy accounts for a major fraction of carbon cycled in these ecosystems. Oxidation of methane by members of Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group without assimilation of methane-carbon provides a plausible explanation. Maintenance energies of these subsurface communities appear to be orders of magnitude lower than minimum values known from laboratory observations, and ecosystem-level carbon budgets suggest that community turnover times are on the order of 100-2,000 years. Our study provides clues about the metabolic functionality of two cosmopolitan groups of uncultured Archaea.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 August 2012
                2012
                : 3
                : 311
                Affiliations
                [1] 1simpleState Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology Shanghai, P.R. China
                [2] 2simpleState Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, P.R. China
                [3] 3simpleSchool of Life Sciences, Xiamen University Xiamen, China
                [4] 4simpleThird Institute of Oceanography, State Oceanic Administration Xiamen, P.R. China
                Author notes

                Edited by: Andreas Teske, University of North Carolina at Chapel Hill, USA

                Reviewed by: Matthew Schrenk, East Carolina University, USA; Aharon Oren, The Hebrew University of Jerusalem, Israel; Runar Stokke, University of Bergen, Norway

                *Correspondence: Xiang Xiao, Laboratory of Microbial Oceanography, Department of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. e-mail: xoxiang@ 123456sjtu.edu.cn

                This article was submitted to Frontiers in Extreme Microbiology, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2012.00311
                3430981
                22969752
                acde3653-4f80-4fd0-a9e8-181fa649422d
                Copyright © 2012 Li, Wang, Chen, Yin and Xiao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 07 November 2011
                : 07 August 2012
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 41, Pages: 14, Words: 6442
                Categories
                Microbiology
                Original Research Article

                Microbiology & Virology
                microbial community,smtz,archaea,anaerobic oxidation of methane,anme,methanogen,estuary,mcra

                Comments

                Comment on this article