6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological credit assignment through dynamic inversion of feedforward networks

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Learning depends on changes in synaptic connections deep inside the brain. In multilayer networks, these changes are triggered by error signals fed back from the output, generally through a stepwise inversion of the feedforward processing steps. The gold standard for this process -- backpropagation -- works well in artificial neural networks, but is biologically implausible. Several recent proposals have emerged to address this problem, but many of these biologically-plausible schemes are based on learning an independent set of feedback connections. This complicates the assignment of errors to each synapse by making it dependent upon a second learning problem, and by fitting inversions rather than guaranteeing them. Here, we show that feedforward network transformations can be effectively inverted through dynamics. We derive this dynamic inversion from the perspective of feedback control, where the forward transformation is reused and dynamically interacts with fixed or random feedback to propagate error signals during the backward pass. Importantly, this scheme does not rely upon a second learning problem for feedback because accurate inversion is guaranteed through the network dynamics. We map these dynamics onto generic feedforward networks, and show that the resulting algorithm performs well on several supervised and unsupervised datasets. We also link this dynamic inversion to Gauss-Newton optimization, suggesting a biologically-plausible approximation to second-order learning. Overall, our work introduces an alternative perspective on credit assignment in the brain, and proposes a special role for temporal dynamics and feedback control during learning.

          Related collections

          Author and article information

          Journal
          09 July 2020
          Article
          2007.05112
          acf9438e-ff93-4f7a-aa2f-1a0719bc95b6

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          q-bio.NC cs.LG cs.NE

          Neural & Evolutionary computing,Artificial intelligence,Neurosciences
          Neural & Evolutionary computing, Artificial intelligence, Neurosciences

          Comments

          Comment on this article