152
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Sets for Utilization of Primary and Secondary Nutrition Supplies in the Distal Gut of Endangered Iberian Lynx

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx ( Lynx pardinus) fecal samples. Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was further characterized by an over-representation of ‘presumptive’ aquaporin aqpZ genes and genes encoding ‘active’ lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins, glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total glycosidases) in genes encoding α-amylase and related enzymes, although it exhibited low rate of enzymatic activity indicative of starch degradation. The preponderance of β-xylosidase activity in protein extracts further suggests lynx gut microbes being most active for the metabolism of β-xylose containing plant N-glycans, although β-xylosidases sequences constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal tissues (with the monotypic dietary profile of the wild lynx consisting of 80–100% wild rabbits) but also for the hydrolysis of prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The Pfam protein families database.

          Pfam is a large collection of protein families and domains. Over the past 2 years the number of families in Pfam has doubled and now stands at 6190 (version 10.0). Methodology improvements for searching the Pfam collection locally as well as via the web are described. Other recent innovations include modelling of discontinuous domains allowing Pfam domain definitions to be closer to those found in structure databases. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://Pfam.cgb.ki.se/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            InterPro, progress and status in 2005

            InterPro, an integrated documentation resource of protein families, domains and functional sites, was created to integrate the major protein signature databases. Currently, it includes PROSITE, Pfam, PRINTS, ProDom, SMART, TIGRFAMs, PIRSF and SUPERFAMILY. Signatures are manually integrated into InterPro entries that are curated to provide biological and functional information. Annotation is provided in an abstract, Gene Ontology mapping and links to specialized databases. New features of InterPro include extended protein match views, taxonomic range information and protein 3D structure data. One of the new match views is the InterPro Domain Architecture view, which shows the domain composition of protein matches. Two new entry types were introduced to better describe InterPro entries: these are active site and binding site. PIRSF and the structure-based SUPERFAMILY are the latest member databases to join InterPro, and CATH and PANTHER are soon to be integrated. InterPro release 8.0 contains 11 007 entries, representing 2573 domains, 8166 families, 201 repeats, 26 active sites, 21 binding sites and 20 post-translational modification sites. InterPro covers over 78% of all proteins in the Swiss-Prot and TrEMBL components of UniProt. The database is available for text- and sequence-based searches via a webserver (http://www.ebi.ac.uk/interpro), and for download by anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative fecal metagenomics unveils unique functional capacity of the swine gut

              Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases) generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 December 2012
                : 7
                : 12
                : e51521
                Affiliations
                [1 ]Department of Applied Biocatalysis, Spanish National Research Council (CSIC), Institute of Catalysis, Madrid, Spain
                [2 ]Institute for Coastal Marine Environment (IAMC), National Research Council (CNR), Messina, Italy
                [3 ]Ribocon GmbH, Bremen, Germany
                [4 ]Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
                [5 ]Centre for Integrated Research in the Rural Environment, Aberystwyth University-Bangor University Partnership (CIRRE), Aberystwyth, Ceredigion, United Kingdom
                [6 ]School of Biological Sciences, Bangor University, Gwynedd, United Kingdom
                [7 ]Consejería de Medio Ambiente de la Junta de Andalucía, Jaén, Spain
                [8 ]Agencia de Medio Ambiente y Agua de Andalucía, Córdoba, Spain
                Wageningen University, The Netherlands
                Author notes

                Competing Interests: Two of the authors are employed by a commercial company (Ribocon GmbH). This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. The authors declare that they have no competing interests.

                Conceived and designed the experiments: MA GL MF. Performed the experiments: MA MF. Analyzed the data: MA EM MR RB JP MMY MF. Contributed reagents/materials/analysis tools: EM MR RB SAH CJN PNG. Wrote the paper: MF MMY MR MAS.

                Article
                PONE-D-12-13911
                10.1371/journal.pone.0051521
                3520844
                23251564
                acfb6cb9-873f-4bc4-bf11-62417317ee4f
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : November 2012
                : 2 November 2012
                Page count
                Pages: 14
                Funding
                The authors greatly acknowledge Ministerio de Agricultura, Alimentación y Medio Ambiente (former Ministerio de Medio Ambiente, Medio Rural y Marino), and the LIFE-Nature project “Conservación y Reintroducción del Lince Ibérico (Lynx pardinus) en Andalucía” for their support and collaboration. This research was supported by the Spanish CSD2007-00005 and by European Regional Development Fund (ERDF) funds. The Regional Government of Environment of the Junta de Andalucía provided permission for the collection of samples (permit SGYB/FOA/AFR/CFS) during routine conservation management works. SAH, PNG and CJN acknowledge the support of Bangor-Aberystwyth Strategic Alliance partnership in frames of Centre for Integrated Research in the Rural Environment (CIRRE) and Biosciences, Environment and Agriculture Alliance (BEAA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Applied Microbiology
                Ecology
                Biodiversity
                Microbial Ecology
                Genomics
                Metagenomics
                Microbiology
                Applied Microbiology
                Microbial Ecology
                Microbial Metabolism
                Zoology
                Mammalogy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article