Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nutrition in early life and the programming of adult disease: a review

      1

      Journal of Human Nutrition and Dietetics

      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Foetal development and infancy are life stages that are characterised by rapid growth, development and maturation of organs and systems. Variation in the quality or quantity of nutrients consumed by mothers during pregnancy, or infants during the first year of life, can exert permanent and powerful effects upon developing tissues. These effects are termed 'programming' and represent an important risk factor for noncommunicable diseases of adulthood, including the metabolic syndrome and coronary heart disease. This narrative review provides an overview of the evidence-base showing that indicators of nutritional deficit in pregnancy are associated with a greater risk of type-2 diabetes and cardiovascular mortality. There is also a limited evidence-base that suggests some relationship between breastfeeding and the timing and type of foods used in weaning, and disease in later life. Many of the associations reported between indicators of early growth and adult disease appear to interact with specific genotypes. This supports the idea that programming is one of several cumulative influences upon health and disease acting across the lifespan. Experimental studies have provided important clues to the mechanisms that link nutritional challenges in early life to disease in adulthood. It is suggested that nutritional programming is a product of the altered expression of genes that regulate the cell cycle, resulting in effective remodelling of tissue structure and functionality. The observation that traits programmed by nutritional exposures in foetal life can be transmitted to further generations adds weight the argument that heritable epigenetic modifications play a critical role in nutritional programming. © 2014 The British Dietetic Association Ltd.

          Related collections

          Most cited references 87

          • Record: found
          • Abstract: found
          • Article: not found

          Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth

          Two follow-up studies were carried out to determine whether lower birthweight is related to the occurrence of syndrome X-Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia. The first study included 407 men born in Hertfordshire, England between 1920 and 1930 whose weights at birth and at 1 year of age had been recorded by health visitors. The second study included 266 men and women born in Preston, UK, between 1935 and 1943 whose size at birth had been measured in detail. The prevalence of syndrome X fell progressively in both men and women, from those who had the lowest to those who had the highest birthweights. Of 64-year-old men whose birthweights were 2.95 kg (6.5 pounds) or less, 22% had syndrome X. Their risk of developing syndrome X was more than 10 times greater than that of men whose birthweights were more than 4.31 kg (9.5 pounds). The association between syndrome X and low birthweight was independent of duration of gestation and of possible confounding variables including cigarette smoking, alcohol consumption and social class currently or at birth. In addition to low birthweight, subjects with syndrome X had small head circumference and low ponderal index at birth, and low weight and below-average dental eruption at 1 year of age. It is concluded that Type 2 diabetes and hypertension have a common origin in sub-optimal development in utero, and that syndrome X should perhaps be re-named "the small-baby syndrome".
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity in young men after famine exposure in utero and early infancy.

            In a historical cohort study of 300,000 19-year-old men exposed to the Dutch famine of 1944-45 and examined at military induction, we tested the hypothesis that prenatal and early postnatal nutrition determines subsequent obesity. Outcomes were opposite depending on the time of exposure. During the last trimester of pregnancy and the first months of life, exposure produced significantly lower obesity rates (P less than 0.005). This result is consistent with the inference that nutritional deprivation affected a critical period of development for adipose-tissue cellularity. During the first half of pregnancy, however, exposure resulted in significantly higher obesity rates (P less than 0.0005). This observation is consistent with the inference that nutritional deprivation affected the differentiation of hypothalamic centers regulating food intake and growth, and that subsequent increased food availability produced an accumulation of excess fat in an organism growing to its predetermined maximum size.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.

              A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B(12) and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.
                Bookmark

                Author and article information

                Journal
                Journal of Human Nutrition and Dietetics
                J Hum Nutr Diet
                Wiley
                09523871
                January 2015
                January 2015
                January 31 2014
                : 28
                : 1-14
                Affiliations
                [1 ]School of Biosciences; University of Nottingham; Sutton Bonington Campus; Loughborough UK
                Article
                10.1111/jhn.12212
                24479490
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Product
                Self URI (article page): http://doi.wiley.com/10.1111/jhn.12212

                Comments

                Comment on this article