13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Degradation, receptor binding affinity, and potency of insulin from the Atlantic hagfish (Myxine glutinosa) determined in isolated rat fat cells.

      The Journal of Biological Chemistry
      Adipose Tissue, drug effects, metabolism, Animals, Binding Sites, Glucose, Hagfishes, Insulin, pharmacology, Kinetics, Lipids, biosynthesis, Receptor, Insulin, Species Specificity, Swine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin from the Atlantic hagfish, Myxine glutinosa, a primitive vertebrate, was studied with respect to degradation, receptor binding, and stimulation of glucose transport and metabolism in isolated rat adipocytes. The degradation was studied in a concentrated suspension with about 100mul of cells/ml of suspension. 125I-labeled hagfish insulin and 125I-labeled pig insulin were degraded at the same rate when present in concentrations of 0.3nM. Native hagfish insulin inhibited the rate of degradation of 125I-labeled pig insulin half-maximally at a concentration of 12+/-2 nM (S.D., n=6) as compared to 130+/-32 nM (S.D.,n=6) for pig insulin. Native hagfish insulin in a concentration of 130 nM was biologically inactivated at a rate several times slower than pig insulin in the same concentration. The results indicate that the maximal velocity (Vmax) of degradation of hagfish insulin as well as the concentration causing half-maximal velocity (Km) are about 10 times lower for hagfish insulin than for pig insulin. The receptor binding and the biological effects of hagfish insulin were studied in dilute cell suspensions where the degradation of hormone in the medium was negligible. The receptor binding affinity of hagfish insulin was 23+/-7 per cent (S.D., n=10) of that of pig insulin. Hagfish insulin was able to elicit the same maximal stimulation of both 3-o-methylglucose exchange and lipogenesis from glucose as pig insulin. However, the potency of hagfish insulin with respect to activation of lipogenesis was only 4.6+/-0.6 per cent (S.D., n=15) of that of pig insulin. Hagfish insulin thus constitutes the first described insulin which exhibits a discrepancy between relative binding affinity and relative potency. This discrepancy was not due to the methionine residue (B31) at the COOH-terminal end of the B chain of hagfish insulin, since removal of this residue caused no marked change in the binding affinity or the potency. The results indicate that the receptor occupancy must be 5 times higher with hagfish insulin than with pig insulin to cause a particular degree of activation of lipogenesis. Hagfish insulin might therefore be characterized as a "partial antagonist" on the receptors. However, it was not possible to demonstrate antagonistic properties of hagfish insulin on the cells. The effect of hagfish insulin plus pig insulin in submaximally stimulating concentrations was additive. Furthermore, the decay of activation of adipocytes after incubation with hagfish insulin followed the same time course as the decay of activation after incubation with pig insulin in a concentration of equal potency. These phenomena are in agreement with the concept that adipocytes possess a large excess of receptors which can mediate the effect of insulin on lipogenesis from glucose.

          Related collections

          Author and article information

          Journal
          556725
          10.1016/S0021-9258(17)32760-6

          Chemistry
          Adipose Tissue,drug effects,metabolism,Animals,Binding Sites,Glucose,Hagfishes,Insulin,pharmacology,Kinetics,Lipids,biosynthesis,Receptor, Insulin,Species Specificity,Swine

          Comments

          Comment on this article