1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The homophilic adhesion molecule sidekick-1 contributes to augmented podocyte aggregation in HIV-associated nephropathy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines.

          Mature podocytes are among the most complex differentiated cells and possess a highly branched array of foot processes that are essential to glomerular filtration in the kidney. Such differentiated podocytes are unable to replicate and culturing of primary podocytes results in rapid growth arrest. Therefore, conditionally immortalized mouse podocyte clones (MPC) were established, which are highly proliferative when cultured under permissive conditions. Nonpermissive conditions render the majority of MPC cells growth arrested within 6 days and induce many characteristics of differentiated podocytes. Both proliferating and differentiating MPC cells express the WT-1 protein and an ordered array of actin fibers and microtubules extends into the forming cellular processes during differentiation, reminiscent of podocyte processes in vivo. These cytoskeletal rearrangements and process formation are accompanied by the onset of synaptopodin synthesis, an actin-associated protein marking specifically differentiated podocytes. In addition, focal contacts are rearranged into an ordered pattern in differentiating MPC cells. Most importantly, electrophysiological studies demonstrate that differentiated MPC cells respond to the vasoactive peptide bradykinin by changes in intracellular calcium concentration. These results suggest a regulatory role of podocytes in glomerular filtration. Taken together, these studies establish that conditionally immortalized MPC cells retain a differentiation potential similar to podocytes in vivo. Therefore, the determinative steps of podocyte differentiation and process formation are studied for the first time using an inducible in vitro model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes.

            The glomerular filtration barrier in the kidney is formed in part by a specialized intercellular junction known as the slit diaphragm, which connects adjacent actin-based foot processes of kidney epithelial cells (podocytes). Mutations affecting a number of slit diaphragm proteins, including nephrin (encoded by NPHS1), lead to renal disease owing to disruption of the filtration barrier and rearrangement of the actin cytoskeleton, although the molecular basis for this is unclear. Here we show that nephrin selectively binds the Src homology 2 (SH2)/SH3 domain-containing Nck adaptor proteins, which in turn control the podocyte cytoskeleton in vivo. The cytoplasmic tail of nephrin has multiple YDxV sites that form preferred binding motifs for the Nck SH2 domain once phosphorylated by Src-family kinases. We show that this Nck-nephrin interaction is required for nephrin-dependent actin reorganization. Selective deletion of Nck from podocytes of transgenic mice results in defects in the formation of foot processes and in congenital nephrotic syndrome. Together, these findings identify a physiological signalling pathway in which nephrin is linked through phosphotyrosine-based interactions to Nck adaptors, and thus to the underlying actin cytoskeleton in podocytes. Simple and widely expressed SH2/SH3 adaptor proteins can therefore direct the formation of a specialized cellular morphology in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility.

              Loss of CD2-associated protein (CD2AP), a component of the filtration complex in the kidney, causes death in mice at 6 weeks of age. Mice with CD2AP haploinsufficiency developed glomerular changes at 9 months of age and had increased susceptibility to glomerular injury by nephrotoxic antibodies or immune complexes. Electron microscopic analysis of podocytes revealed defects in the formation of multivesicular bodies, suggesting an impairment of the intracellular degradation pathway. Two human patients with focal segmental glomerulosclerosis had a mutation predicted to ablate expression of one CD2AP allele, implicating CD2AP as a determinant of human susceptibility to glomerular disease.
                Bookmark

                Author and article information

                Journal
                The FASEB Journal
                The FASEB Journal
                FASEB
                0892-6638
                1530-6860
                May 2007
                May 2007
                : 21
                : 7
                : 1367-1375
                Affiliations
                [1 ]Division of Nephrology and
                [2 ]Division of Nephrology, Juntendo University School of Medicine, Tokyo, Japan
                [3 ]Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, USA; and
                Article
                10.1096/fj.06-7191com
                ad2049c7-fd29-40d7-ad68-4c6f5305f82e
                © 2007
                History

                Comments

                Comment on this article