Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. Methods: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel ( hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current ( I<sub>hERG</sub>). Results: HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site ( hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and I<sub>hERG</sub> reduction. Conclusion: HCQ can reduce the mature hERG channel expression and I<sub>hERG</sub> via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.