4
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Genetic Polymorphisms in IL12Rβ2 in Chronic Obstructive Pulmonary Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic obstructive pulmonary disease (COPD) is the most common chronic inflammatory airway disease. Il-12r beta 2 ( IL-12Rβ2) is important for the production of pathogenic Th1 cells. We aimed to explore the association between IL-12Rβ2 genetic variants and COPD risk among southern Chinese Han population.

          Methods

          We recruited 996 participants to perform an association analysis through SNPStats online software. We used false-positive report probability analysis to detect whether the positive findings were noteworthy. Haploview 4.2 software and SNPStats were used to conduct the haplotype analysis and linkage disequilibrium. Finally, the interaction of SNP-SNP in COPD risk was evaluated by multi-factor dimensionality reduction.

          Results

          The study found evidence that genetic loci in IL-12Rβ2 (rs2201584, rs1874791, rs6679356, and rs3790567) were potentially associated with the COPD susceptibility. In particular, IL-12Rβ2-rs2201584 and -rs1874791 showed close associations with COPD risk in both overall and several stratified analyses. Overall analysis or several stratified analyses indicated that allele A or homozygous genotype AA of IL-12Rβ2-rs2201584 were risk factors for COPD (Allele A: OR (95% CI) = 1.23 (1.02–1.48), p = 0.033; genotype AA: OR (95% CI) = 1.76 (1.15–2.69), p = 0.009). The allele A or homozygous genotype AA of IL-12Rβ2- rs1874791 were also risk factors for COPD (Allele A: OR (95% CI) = 1.36 (1.10–1.68), p = 0.004; genotype AA: OR (95% CI) = 2.17 (1.18–3.99), p = 0.013).

          Conclusion

          Intronic variants in IL-12Rβ2 (rs2201584, rs1874791, rs6679356, and rs3790567) were associated with the COPD susceptibility. In particular, there were sufficient evidences that IL-12Rβ2-rs2201584 and -rs1874791 were associated with the increasing risk of COPD.

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

          Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease

            The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has raised many questions about the management of patients with chronic obstructive pulmonary disease (COPD) and whether modifications of their therapy are required. It has raised questions about recognizing and differentiating coronavirus disease (COVID-19) from COPD given the similarity of the symptoms. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) Science Committee used established methods for literature review to present an overview of the management of patients with COPD during the COVID-19 pandemic. It is unclear whether patients with COPD are at increased risk of becoming infected with SARS-CoV-2. During periods of high community prevalence of COVID-19, spirometry should only be used when it is essential for COPD diagnosis and/or to assess lung function status for interventional procedures or surgery. Patients with COPD should follow basic infection control measures, including social distancing, hand washing, and wearing a mask or face covering. Patients should remain up to date with appropriate vaccinations, particularly annual influenza vaccination. Although data are limited, inhaled corticosteroids, long-acting bronchodilators, roflumilast, or chronic macrolides should continue to be used as indicated for stable COPD management. Systemic steroids and antibiotics should be used in COPD exacerbations according to the usual indications. Differentiating symptoms of COVID-19 infection from chronic underlying symptoms or those of an acute COPD exacerbation may be challenging. If there is suspicion for COVID-19, testing for SARS-CoV-2 should be considered. Patients who developed moderate-to-severe COVID-19, including hospitalization and pneumonia, should be treated with evolving pharmacotherapeutic approaches as appropriate, including remdesivir, dexamethasone, and anticoagulation. Managing acute respiratory failure should include appropriate oxygen supplementation, prone positioning, noninvasive ventilation, and protective lung strategy in patients with COPD and severe acute respiratory distress syndrome. Patients who developed asymptomatic or mild COVID-19 should be followed with the usual COPD protocols. Patients who developed moderate or worse COVID-19 should be monitored more frequently and accurately than the usual patients with COPD, with particular attention to the need for oxygen therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone acetylation and deacetylation: importance in inflammatory lung diseases.

              Inflammatory lung diseases are characterised by increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as nuclear factor-kappa B. Gene expression is regulated by acetylation of core histones through the action of coactivators, such as CREB-binding protein, with intrinsic histone acetyltransferase (HAT) activity. Conversely, gene repression is mediated via histone deacetylases (HDACs) and other corepressors. In asthma, there is an increase in HAT activity and some reduction in HDAC activity, which is restored by corticosteroid therapy. Corticosteroids switch off inflammatory genes in asthma through the inhibition of HAT activity and by the recruitment of HDAC2 to the activated inflammatory gene complex. In chronic obstructive pulmonary disease, there is a reduction in HDAC2 activity and expression, which may account for the amplified inflammation and resistance to the actions of corticosteroids. The reduction in HDAC2 may be secondary to oxidative and nitrative stress as a result of cigarette smoking and severe inflammation, and may also occur in severe asthma, smoking asthmatic patients and cystic fibrosis. Similar mechanisms may also account for the steroid resistance seen with latent adenovirus infections. The reduction in histone deacetylase activity can be restored by theophylline, which may be able to reverse steroid resistance in chronic obstructive pulmonary disease and other inflammatory diseases.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                copd
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove
                1176-9106
                1178-2005
                27 July 2022
                2022
                : 17
                : 1671-1683
                Affiliations
                [1 ]Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, 570311, People’s Republic of China
                Author notes
                Correspondence: Haihong Wu, Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , #19, Xiuhua Road, Xiuying District, Haikou, 570311, People’s Republic of China, Tel/Fax +86 13976906068, Email y7y@163.com
                Article
                366844
                10.2147/COPD.S366844
                9342432
                ad245a37-dfcb-4493-bec6-b8d66e6834e3
                © 2022 Fu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 17 March 2022
                : 25 June 2022
                Page count
                Figures: 3, Tables: 21, References: 35, Pages: 13
                Funding
                Funded by: did not receive;
                This study was supported by the National Natural Science Foundation of China (81860015 and 81660013).
                Categories
                Original Research

                Respiratory medicine
                chronic obstructive pulmonary disease,il-12rβ2,genetic variants,chinese han population

                Comments

                Comment on this article