+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liquisolid technique and its applications in pharmaceutics

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical Abstract


          Most of the newly developed drug candidates are lipophilic and poorly water-soluble. Enhancing the dissolution and bioavailability of these drugs is a major challenge for the pharmaceutical industry. Liquisolid technique, which is based on the conversion of the drug in liquid state into an apparently dry, non-adherent, free flowing and compressible powder, is a novel and advanced approach to tackle the issue. The objective of this article is to present an overview of liquisolid technique and summarize the progress of its applications in pharmaceutics. Low cost, simple processing and great potentials in industrial production are main advantages of this approach. In addition to the enhancement of dissolution rate of poorly water-soluble drugs, this technique is also a fairly new technique to effectively retard drug release. Furthermore, liquisolid technique has been investigated as a tool to minimize the effect of pH variation on drug release and as a promising alternative to conventional coating for the improvement of drug photostability in solid dosage forms. Overall, liquisolid technique is a newly developed and promising tool for enhancing drug dissolution and sustaining drug release, and its potential applications in pharmaceutics are still being broadened.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals.

          For the development of an optimized oral formulation for cyclosporine A, 2% of this drug has been formulated in solid lipid nanoparticles (SLN, mean size 157 nm) and as nanocrystals (mean size 962 nm). The encapsulation rate of SLN was found to be 96.1%. Nanocrystals are composed of 100% of drug. For the assessment of the pharmacokinetic parameters the developed formulations have been administered via oral route to three young pigs. Comparison studies with a commercial Sandimmun Neoral/Optoral used as reference have been performed. The blood profiles observed after oral administration of the commercial microemulsion Sandimmun revealed a fast absorption of drug leading to the observation of a plasma peak above 1,000 ng/ml within the first 2 h. For drug nanocrystals most of the blood concentrations were in the range between 30 and 70 ng/ml over a period of 14 h. These values were very low, showing huge differences between the measuring time points and between the tested animals. On the contrary, administration of cyclosporine-loaded SLN led to a mean plasma profile with almost similarly low variations in comparison to the reference microemulsion, however with no initial blood peak as observed with the Sandimmun Neoral/Optoral. Comparing the area under the curves (AUC) obtained with the tested animals it could be stated that the SLN formulation avoids side effects by lacking blood concentrations higher than 1,000 ng/ml. In this study it has been proved that using SLN as a drug carrier for oral administration of cyclosporine A a low variation in bioavailability of the drug and simultaneously avoiding the plasma peak typical of the first Sandimmun formulation can be achieved.
            • Record: found
            • Abstract: found
            • Article: not found

            When poor solubility becomes an issue: from early stage to proof of concept.

            Drug absorption, sufficient and reproducible bioavailability and/or pharmacokinetic profile in humans are recognized today as one of the major challenges in oral delivery of new drug substances. The issue arose especially when drug discovery and medicinal chemistry moved from wet chemistry to combinatorial chemistry and high throughput screening in the mid-1990s. Taking into account the drug product development times of 8-12 years, the apparent R&D productivity gap as determined by the number of products in late stage clinical development today, is the result of the drug discovery and formulation development in the late 1990s, which were the early and enthusiastic times of the combinatorial chemistry and high throughput screening. In parallel to implementation of these new technologies, tremendous knowledge has been accumulated on biological factors like transporters, metabolizing enzymes and efflux systems as well as on the physicochemical characteristics of the drug substances like crystal structures and salt formation impacting oral bioavailability. Research tools and technologies have been, are and will be developed to assess the impact of these factors on drug absorption for the new chemical entities. The conference focused specifically on the impact of compounds with poor solubility on analytical evaluation, prediction of oral absorption, substance selection, material and formulation strategies and development. The existing tools and technologies, their potential utilization throughout the drug development process and the directions for further research to overcome existing gaps and influence these drug characteristics were discussed in detail.
              • Record: found
              • Abstract: found
              • Article: not found

              Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine).

              Different liquisolid formulations of carbamazepine were accomplished by dissolving the drug in the non-toxic hydrophilic liquids, and adsorbing the solution onto the surface of silica. In order to reduce the amounts of carrier and aerosil in liquisolid formulations, some additives namely polyvinylpyrrolidone (PVP), hydroxypropyle methylcellulose (HPMC) and polyethylene glycol (PEG 35000) were added to liquid medication to increase loading factor. The effects of various ratios of carrier to coating material, PVP concentration, effect of aging and type of the carrier on dissolution rate of liquisolid compacts were studied. X-ray crystallography and differential scanning calorimetery (DSC) were used for evaluation of physicochemical properties of carbamazepine in liquisolid formulations. The results showed that the drug loading factor was increased significantly in the presence of additives. Liquisolid formulations containing PVP as additive, exhibited significantly higher drug dissolution rates compared to the compacts prepared by the direct compression technique. It was shown that microcrystalline cellulose had more liquid retention potential in comparison with lactose, and the formulations containing microcrystalline cellulose as carrier, showed higher dissolution rate. By decreasing the ratio of microcrystalline cellulose to silica from 20 to 10, an improvement in dissolution rate was observed. Further decrease in the ratio of microcrystalline cellulose:silica from 10 to 5 resulted in a significant reduction in dissolution rate. Increasing of PVP concentration in liquid medication caused a dramatic increase in dissolution rate at first 30min. The results showed that the dissolution rate of liquisolid tablets was not significantly affected by storing the tablets at 25 degrees C/75% relative humidity for a period of 6 months. The results of DSC and X-ray crystallography did not show any changes in crystallinity of the drug and interaction between carbamazepine and exipients during the process.

                Author and article information

                Asian J Pharm Sci
                Asian J Pharm Sci
                Asian Journal of Pharmaceutical Sciences
                Shenyang Pharmaceutical University
                04 November 2016
                March 2017
                04 November 2016
                : 12
                : 2
                : 115-123
                [a ]School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
                [b ]Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
                Author notes
                [* ]Corresponding author. Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China. Fax: +86 24 23986310. Wangdksy@
                [** ]Corresponding author. Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China. Fax: +86 24 23986305. dingpingtian@
                © 2017 Shenyang Pharmaceutical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (

                Review Article


                Comment on this article