25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparing whole genomes using DNA microarrays

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Key Points

          • Hybridization between complementary strands of DNA enables the interrogation of unknown DNA by comparison with DNA of known sequence or genomic context.

          • DNA microarrays containing hundreds of thousands or millions of probes can be used to interrogate genomic sequence. Advances in array-based approaches have enabled detection of the main forms of genomic variation: amplifications, deletions, insertions, rearrangements and base-pair changes.

          • Structural variation in the genome — deletions and duplications, copy number variation, insertions, inversions and chromosomal translocations — can be detected using array comparative genome hybridization. For this application it is often sufficient to have large probes (such as PCR products, cDNA clones or long oligonucleotides) that allow for hybridization despite some sequence differences.

          • When DNA probes are short, hybridization efficiency is acutely sensitive to mismatches; such probes therefore facilitate comparison of genomes at the nucleotide level.

          • Global mapping of insertion sites is performed by isolating the insertion element and its immediately neighbouring DNA. The DNA is then hybridized to a whole-genome array to identify its genomic location.

          • Comprehensive detection of mutations in a complex genome is carried out using whole-genome overlapping tiling arrays, which provide multiple measurements of the effect of an SNP on hybridization.

          • Resequencing arrays use at least four probes per interrogated base and have been used to resequence small genomes.

          • Microarrays offer a relatively inexpensive and efficient means of comparing all known classes of genomic diversity between closely related genomes. However, they are not appropriate for some applications, such as detecting unknown sequences or interrogating highly repetitive or low-complexity sequences.

          Abstract

          Microarray-based approaches are a fast, flexible and inexpensive alternative to genome sequencing for characterizing the genomes of many individuals within a species. This article reviews the advances that are making microarrays a viable choice for detecting all forms of genetic diversity.

          Abstract

          The rapid accumulation of complete genomic sequences offers the opportunity to carry out an analysis of inter- and intra-individual genome variation within a species on a routine basis. Sequencing whole genomes requires resources that are currently beyond those of a single laboratory and therefore it is not a practical approach for resequencing hundreds of individual genomes. DNA microarrays present an alternative way to study differences between closely related genomes. Advances in microarray-based approaches have enabled the main forms of genomic variation (amplifications, deletions, insertions, rearrangements and base-pair changes) to be detected using techniques that are readily performed in individual laboratories using simple experimental approaches.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between microdeletion and microduplication at 16p11.2 and autism.

            Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Children's Hospital Boston and in a large population study in Iceland. Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Children's Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Children's Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations. Copyright 2008 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diet and the evolution of human amylase gene copy number variation.

              Starch consumption is a prominent characteristic of agricultural societies and hunter-gatherers in arid environments. In contrast, rainforest and circum-arctic hunter-gatherers and some pastoralists consume much less starch. This behavioral variation raises the possibility that different selective pressures have acted on amylase, the enzyme responsible for starch hydrolysis. We found that copy number of the salivary amylase gene (AMY1) is correlated positively with salivary amylase protein level and that individuals from populations with high-starch diets have, on average, more AMY1 copies than those with traditionally low-starch diets. Comparisons with other loci in a subset of these populations suggest that the extent of AMY1 copy number differentiation is highly unusual. This example of positive selection on a copy number-variable gene is, to our knowledge, one of the first discovered in the human genome. Higher AMY1 copy numbers and protein levels probably improve the digestion of starchy foods and may buffer against the fitness-reducing effects of intestinal disease.
                Bookmark

                Author and article information

                Contributors
                dgresham@genomics.princeton.edu , maitreya@princeton.edu , botstein@genomics.princeton.edu
                dgresham@genomics.princeton.edu , maitreya@princeton.edu , botstein@genomics.princeton.edu
                dgresham@genomics.princeton.edu , maitreya@princeton.edu , botstein@genomics.princeton.edu
                Journal
                Nat Rev Genet
                Nat. Rev. Genet
                Nature Reviews. Genetics
                Nature Publishing Group UK (London )
                1471-0056
                1471-0064
                2008
                : 9
                : 4
                : 291-302
                Affiliations
                [1 ]GRID grid.16750.35, ISNI 0000 0001 2097 5006, Lewis–Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, ; Princeton, 08544 New Jersey USA
                [2 ]GRID grid.16750.35, ISNI 0000 0001 2097 5006, Department of Molecular Biology, , Carl Icahn Laboratory, Princeton University, ; Princeton, 08544 New Jersey USA
                Article
                BFnrg2335
                10.1038/nrg2335
                7097741
                18347592
                ad2e2b95-683c-489a-b155-f1a32a373b2b
                © Nature Publishing Group 2008

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2008

                Comments

                Comment on this article