19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “ in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and Δ regA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In silico prediction of protein-protein interactions in human macrophages

          Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combining evidence using p-values: application to sequence homology searches.

            To illustrate an intuitive and statistically valid method for combining independent sources of evidence that yields a p-value for the complete evidence, and to apply it to the problem of detecting simultaneous matches to multiple patterns in sequence homology searches. In sequence analysis, two or more (approximately) independent measures of the membership of a sequence (or sequence region) in some class are often available. We would like to estimate the likelihood of the sequence being a member of the class in view of all the available evidence. An example is estimating the significance of the observed match of a macromolecular sequence (DNA or protein) to a set of patterns (motifs) that characterize a biological sequence family. An intuitive way to do this is to express each piece of evidence as a p-value, and then use the product of these p-values as the measure of membership in the family. We derive a formula and algorithm (QFAST) for calculating the statistical distribution of the product of n independent p-values. We demonstrate that sorting sequences by this p-value effectively combines the information present in multiple motifs, leading to highly accurate and sensitive sequence homology searches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.

              Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                18 May 2017
                2017
                : 7
                : 186
                Affiliations
                [1] 1Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de Montpellier Montpellier, France
                [2] 2Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón (CITA-Universidad de Zaragoza) Zaragoza, Spain
                [3] 3Institut de Médecine Régénératrice et Biothérapie—U1183 Institut National de la Santé et de la Recherche Médicale Montpellier, France
                [4] 4Department of Biological Safety, German Federal Institute for Risk Assessment Berlin, Germany
                Author notes

                Edited by: Matthew C. Wolfgang, University of North Carolina at Chapel Hill, USA

                Reviewed by: Clayton Caswell, Virginia Tech, USA; Roy Martin Roop II, East Carolina University, USA

                *Correspondence: Véronique Jubier-Maurin veronique.maurin@ 123456cpbs.cnrs.fr
                Article
                10.3389/fcimb.2017.00186
                5435760
                ad339376-a2e4-4e31-9d54-04dcd7f1f50a
                Copyright © 2017 Abdou, Jiménez de Bagüés, Martínez-Abadía, Ouahrani-Bettache, Pantesco, Occhialini, Al Dahouk, Köhler and Jubier-Maurin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 March 2017
                : 28 April 2017
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 89, Pages: 19, Words: 15800
                Categories
                Microbiology
                Original Research

                Infectious disease & Microbiology
                brucella,two-component system,rega,oxygen,persistence,isocitrate lyase,infection,energy metabolism

                Comments

                Comment on this article