81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Role for the Motor System in Binding Abstract Emotional Meaning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensorimotor areas activate to action- and object-related words, but their role in abstract meaning processing is still debated. Abstract emotion words denoting body internal states are a critical test case because they lack referential links to objects. If actions expressing emotion are crucial for learning correspondences between word forms and emotions, emotion word–evoked activity should emerge in motor brain systems controlling the face and arms, which typically express emotions. To test this hypothesis, we recruited 18 native speakers and used event-related functional magnetic resonance imaging to compare brain activation evoked by abstract emotion words to that by face- and arm-related action words. In addition to limbic regions, emotion words indeed sparked precentral cortex, including body-part–specific areas activated somatotopically by face words or arm words. Control items, including hash mark strings and animal words, failed to activate precentral areas. We conclude that, similar to their role in action word processing, activation of frontocentral motor systems in the dorsal stream reflects the semantic binding of sign and meaning of abstract words denoting emotions and possibly other body internal states.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring emotion: the Self-Assessment Manikin and the Semantic Differential.

          The Self-Assessment Manikin (SAM) is a non-verbal pictorial assessment technique that directly measures the pleasure, arousal, and dominance associated with a person's affective reaction to a wide variety of stimuli. In this experiment, we compare reports of affective experience obtained using SAM, which requires only three simple judgments, to the Semantic Differential scale devised by Mehrabian and Russell (An approach to environmental psychology, 1974) which requires 18 different ratings. Subjective reports were measured to a series of pictures that varied in both affective valence and intensity. Correlations across the two rating methods were high both for reports of experienced pleasure and felt arousal. Differences obtained in the dominance dimension of the two instruments suggest that SAM may better track the personal response to an affective stimulus. SAM is an inexpensive, easy method for quickly assessing reports of affective response in many contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perceptual symbol systems.

            Prior to the twentieth century, theories of knowledge were inherently perceptual. Since then, developments in logic, statistics, and programming languages have inspired amodal theories that rest on principles fundamentally different from those underlying perception. In addition, perceptual approaches have become widely viewed as untenable because they are assumed to implement recording systems, not conceptual systems. A perceptual theory of knowledge is developed here in the context of current cognitive science and neuroscience. During perceptual experience, association areas in the brain capture bottom-up patterns of activation in sensory-motor areas. Later, in a top-down manner, association areas partially reactivate sensory-motor areas to implement perceptual symbols. The storage and reactivation of perceptual symbols operates at the level of perceptual components--not at the level of holistic perceptual experiences. Through the use of selective attention, schematic representations of perceptual components are extracted from experience and stored in memory (e.g., individual memories of green, purr, hot). As memories of the same component become organized around a common frame, they implement a simulator that produces limitless simulations of the component (e.g., simulations of purr). Not only do such simulators develop for aspects of sensory experience, they also develop for aspects of proprioception (e.g., lift, run) and introspection (e.g., compare, memory, happy, hungry). Once established, these simulators implement a basic conceptual system that represents types, supports categorization, and produces categorical inferences. These simulators further support productivity, propositions, and abstract concepts, thereby implementing a fully functional conceptual system. Productivity results from integrating simulators combinatorially and recursively to produce complex simulations. Propositions result from binding simulators to perceived individuals to represent type-token relations. Abstract concepts are grounded in complex simulations of combined physical and introspective events. Thus, a perceptual theory of knowledge can implement a fully functional conceptual system while avoiding problems associated with amodal symbol systems. Implications for cognition, neuroscience, evolution, development, and artificial intelligence are explored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active perception: sensorimotor circuits as a cortical basis for language.

              Action and perception are functionally linked in the brain, but a hotly debated question is whether perception and comprehension of stimuli depend on motor circuits. Brain language mechanisms are ideal for addressing this question. Neuroimaging investigations have found specific motor activations when subjects understand speech sounds, word meanings and sentence structures. Moreover, studies involving transcranial magnetic stimulation and patients with lesions affecting inferior frontal regions of the brain have shown contributions of motor circuits to the comprehension of phonemes, semantic categories and grammar. These data show that language comprehension benefits from frontocentral action systems, indicating that action and perception circuits are interdependent.
                Bookmark

                Author and article information

                Journal
                Cereb Cortex
                Cereb. Cortex
                cercor
                cercor
                Cerebral Cortex (New York, NY)
                Oxford University Press
                1047-3211
                1460-2199
                July 2012
                12 September 2011
                12 September 2011
                : 22
                : 7
                : 1634-1647
                Affiliations
                [1 ]Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
                [2 ]Anglia Ruskin University, Cambridge CB1 1PT, UK
                [3 ]Free University of Berlin, 12195 Berlin, Germany
                Author notes
                Address correspondence to Rachel Moseley, MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, UK. Email: rachel.moseley@ 123456mrc-cbu.cam.ac.uk .
                Article
                10.1093/cercor/bhr238
                3377965
                21914634
                ad435085-8286-4292-a926-d61a7a666149
                © The Authors 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 14
                Categories
                Articles

                Neurology
                language,neuroscience,semantic somatotopy,embodiment
                Neurology
                language, neuroscience, semantic somatotopy, embodiment

                Comments

                Comment on this article