2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of Cancer Upregulated Gene 2 (CUG2) Decreases Spry2 Through c-Cbl, Leading to Activation of EGFR and β-Catenin Signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. Because the increased activity and expression of epidermal growth factor receptor (EGFR) kinase have been reported in A549 cancer cells overexpressing CUG2 (A549-CUG2) compared with control cells (A549-Vec), the Sprouty2 (Spry2) protein has gained attention as the downstream molecule of EGFR signaling. Therefore, we aim to identify the role of Spry2 in CUG2-overexpressing lung cancer cells.

          Materials and Methods

          Spry2 expression levels were examined in A549-CUG2 and A549-Vec cells by Western blotting and qRT-PCR. Cell migration, invasion, and sphere formation were examined after Spry2 suppression and overexpression. EGFR-Stat1 and Akt-ERK protein phosphorylation levels were detected via immunoblotting. NEK2 kinase and β-catenin reporter assay were performed for downstream of Spry2 signaling.

          Results

          Although A549-CUG2 cells showed lower levels of the Spry2 protein than A549-Vec cells, no difference in levels of Spry2 transcript was observed between both cells via qRT-PCR. Furthermore, MG132 treatment enhanced the protein levels and ubiquitination of Spry2, suggesting that Spry2 protein expression can be regulated via the ubiquitin-proteasome pathway. The enforced expression of c-Cbl, known as the binding partner of Spry2, decreased the Spry2 protein levels, whereas its knockdown oppositely increased them. Epithelial–mesenchymal transition (EMT) and sphere formation were increased in A549-Vec cells during Spry2 siRNA treatment, confirming the role of Spry2 in CUG2-induced oncogenesis. Furthermore, EMT and sphere formation were determined by the Spry2 protein levels through the regulation of EGFR-Stat1 and β-catenin-NEK2-Yap1 signaling pathways.

          Conclusion

          CUG2 reduces Spry2 protein levels, the negative signaling molecule of cell proliferation, via c-Cbl, possibly activating the EGFR and β-catenin signaling pathways and, in turn, contributing to the induction of cancer stem cell-like phenotypes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Analyzing real-time PCR data by the comparative CT method

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches.

              In the bone marrow, the special microenvironment niches nurture a pool of hematopoietic stem cells (HSCs). Many HSCs reside near the vasculature, but the molecular regulatory mechanism of niches for HSC maintenance remains unclear. Here we showed that the induced deletion of CXCR4, a receptor for CXC chemokine ligand (CXCL) 12 in adult mice, resulted in severe reduction of HSC numbers and increased sensitivity to myelotoxic injury, although it did not impair expansion of the more mature progenitors. Most HSCs were found in contact with the cells expressing high amounts of CXCL12, which we have called CXCL12-abundant reticular (CAR) cells. CAR cells surrounded sinusoidal endothelial cells or were located near the endosteum. CXCL12-CXCR4 signaling plays an essential role in maintaining the quiescent HSC pool, and CAR cells appear to be a key component of HSC niches, including both vascular and endosteal niches in adult bone marrow.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                cmar
                cancmanres
                Cancer Management and Research
                Dove
                1179-1322
                15 October 2020
                2020
                : 12
                : 10243-10250
                Affiliations
                [1 ]BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
                [2 ]Department of Biology, Faculty of Science, Thaksin University , Pattalung 93210, Thailand
                [3 ]Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology, Ladkrabang Prince of Chumphon Campus , Chumphon 86160, Thailand
                [4 ]Department of Biosciences, Dong-A University , Busan 49315, Republic of Korea
                Author notes
                Correspondence: Young-Hwa Chung Department of Cogno-Mechatronics Engineering, Pusan National University , Geumjeong Gu, Busan Daehak Ro 63-2, Busan46241, Republic of Korea Email younghc@pusan.ac.kr
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-7611-6697
                http://orcid.org/0000-0002-5945-917X
                Article
                271109
                10.2147/CMAR.S271109
                7573319
                ad473a4a-582a-4e3b-b08e-06c67aa826db
                © 2020 Yawut et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 10 July 2020
                : 09 September 2020
                Page count
                Figures: 4, References: 30, Pages: 8
                Funding
                Funded by: Pusan National University, open-funder-registry 10.13039/501100002543;
                This study was supported by two-year research grant from Pusan National University, Busan, Republic of Korea.
                Categories
                Original Research

                Oncology & Radiotherapy
                cug2,cancer stem cell-like phenotypes,spry2,c-cbl
                Oncology & Radiotherapy
                cug2, cancer stem cell-like phenotypes, spry2, c-cbl

                Comments

                Comment on this article