69
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple Resistances and Complex Mechanisms of Anopheles sinensis Mosquito: A Major Obstacle to Mosquito-Borne Diseases Control and Elimination in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria, dengue fever, and filariasis are three of the most common mosquito-borne diseases worldwide. Malaria and lymphatic filariasis can occur as concomitant human infections while also sharing common mosquito vectors. The overall prevalence and health significance of malaria and filariasis have made them top priorities for global elimination and control programmes. Pyrethroid resistance in anopheline mosquito vectors represents a highly significant problem to malaria control worldwide. Several methods have been proposed to mitigate insecticide resistance, including rotational use of insecticides with different modes of action. Anopheles sinensis, an important malaria and filariasis vector in Southeast Asia, represents an interesting mosquito species for examining the consequences of long-term insecticide rotation use on resistance. We examined insecticide resistance in two An. Sinensis populations from central and southern China against pyrethroids, organochlorines, organophosphates, and carbamates, which are the major classes of insecticides recommended for indoor residual spray. We found that the mosquito populations were highly resistant to the four classes of insecticides. High frequency of kdr mutation was revealed in the central population, whereas no kdr mutation was detected in the southern population. The frequency of G119S mutation in the ace-1 gene was moderate in both populations. The classification and regression trees (CART) statistical analysis found that metabolic detoxification was the most important resistance mechanism, whereas target site insensitivity of L1014 kdr mutation played a less important role. Our results indicate that metabolic detoxification was the dominant mechanism of resistance compared to target site insensitivity, and suggests that long-term rotational use of various insecticides has led An. sinensis to evolve a high insecticide resistance. This study highlights the complex network of mechanisms conferring multiple resistances to chemical insecticides in mosquito vectors and it has important implication for designing and implementing vector resistance management strategies.

          Author Summary

          Malaria and lymphatic filariasis are two of the most important mosquito-borne parasitic diseases worldwide, which can occur as concomitant human infections. The Anopheles sinensis mosquito is the most common malaria and lymphatic filariasis vector in Southeast Asia. Disease-vector control is an important part of the global malaria and filariasis control strategies. Pyrethroid insecticides are the major vector control agents, and rotational or combinational use with other classes of insecticides has been proposed to mitigate the problem of pyrethroid resistance. Therefore, assessing resistance to multiple classes of insecticides is important because vector control programs may not be effective, or even fail, if mosquito vectors are already resistant to the insecticides being used in rotation or combination. The field populations of An. sinensis mosquito from central China (Anhui) and southern China (Yunnan) developed high resistance to four classes of insecticides tested, including pyrethroids (deltamethrin and permethrin), organochlorine (DDT), organophosphate (malathion), and carbamate (bendiocarb). This study examined two questions: 1) the consequences of long-term insecticide rotation use on insecticide resistance, and 2) the role of metabolic detoxification and target site insensitivity in resistance to chemical insecticides. The information obtained from this investigation is valuable in informing current and future vector control strategies.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?

          The use of pyrethroid insecticides in malaria vector control has increased dramatically in the past decade through the scale up of insecticide treated net distribution programmes and indoor residual spraying campaigns. Inevitably, the major malaria vectors have developed resistance to these insecticides and the resistance alleles are spreading at an exceptionally rapid rate throughout Africa. Although substantial progress has been made on understanding the causes of pyrethroid resistance, remarkably few studies have focused on the epidemiological impact of resistance on current malaria control activities. As we move into the malaria eradication era, it is vital that the implications of insecticide resistance are understood and strategies to mitigate these effects are implemented. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

            Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors.

              High insecticide resistance resulting from insensitive acetylcholinesterase (AChE) has emerged in mosquitoes. A single mutation (G119S of the ace-1 gene) explains this high resistance in Culex pipiens and in Anopheles gambiae. In order to provide better documentation of the ace-1 gene and the effect of the G119S mutation, we present a three-dimension structure model of AChE, showing that this unique substitution is localized in the oxyanion hole, explaining the insecticide insensitivity and its interference with the enzyme catalytic functions. As the G119S creates a restriction site, a simple PCR test was devised to detect its presence in both A. gambiae and C. pipiens, two mosquito species belonging to different subfamilies (Culicinae and Anophelinae). It is possibile that this mutation also explains the high resistance found in other mosquitoes, and the present results indicate that the PCR test detects the G119S mutation in the malaria vector A. albimanus. The G119S has thus occurred independently at least four times in mosquitoes and this PCR test is probably of broad applicability within the Culicidae family.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                May 2014
                22 May 2014
                : 8
                : 5
                : e2889
                Affiliations
                [1 ]Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
                [2 ]Department of Pathogen Biology, Bengbu Medical College, Anhui, China
                [3 ]Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California, United States of America
                Technical University of Mombasa, Kenya
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DZ CZ GY. Performed the experiments: DZ XC JH. Analyzed the data: DZ GZ GY. Contributed reagents/materials/analysis tools: QF LS FF. Wrote the paper: XC DZ GY.

                Article
                PNTD-D-13-01923
                10.1371/journal.pntd.0002889
                4031067
                24852174
                ad5bf21d-c97b-4506-bf05-a249bd54a525
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 December 2013
                : 10 April 2014
                Page count
                Pages: 11
                Funding
                This work is supported by grants from the National Institutes of Health (U19AI08967, R03TW008940 and D43TW009527) and Emerging Infectious Disease Prevention and Control Key Laboratory of Guangdong Provincial Higher Education (KLB09007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Medicine and Health Sciences
                Epidemiology
                Disease Vectors
                Infectious Diseases
                Parasitic Diseases
                Helminth Infections
                Filariasis
                Lymphatic Filariasis
                Malaria
                Public and Occupational Health
                Global Health

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article