27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spliceosomes are assembled in stages. The first stage forms complex E, which is characterized by the presence of U1 snRNPs base-paired to the 5′ splice site, components recognizing the 3′ splice site and proteins thought to connect them. The splice sites are held in close proximity and the pre-mRNA is committed to splicing. Despite this, the sites for splicing appear not to be fixed until the next complex (A) forms. We have investigated the reasons why 5′ splice sites are not fixed in complex E, using single molecule methods to determine the stoichiometry of U1 snRNPs bound to pre-mRNA with one or two strong 5′ splice sites. In complex E most transcripts with two alternative 5′ splice sites were bound by two U1 snRNPs. However, the surplus U1 snRNPs were displaced during complex A formation in an ATP-dependent process requiring an intact 3′ splice site. This process leaves only one U1 snRNP per complex A, regardless of the number of potential sites. We propose a mechanism for selection of the 5′ splice site. Our results show that constitutive splicing components need not be present in a fixed stoichiometry in a splicing complex.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.

          Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spliceosomal UsnRNP biogenesis, structure and function.

            Significant advances have been made in elucidating the biogenesis pathway and three-dimensional structure of the UsnRNPs, the building blocks of the spliceosome. U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis of pre-mRNA splicing has been presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.

              Coupling between transcription and RNA processing is a key gene regulatory mechanism. Here we use chromatin immunoprecipitation to detect transcription-dependent accumulation of the precursor mRNA (pre-mRNA) splicing factors hnRNP A1, U2AF65 and U1 and U5 snRNPs on the intron-containing human FOS gene. These factors were poorly detected on intronless heat-shock and histone genes, a result that opposes direct recruitment by RNA polymerase II (Pol II) or the cap-binding complex in vivo. However, an observed RNA-dependent interaction between U2AF65 and active forms of Pol II may stabilize U2AF65 binding to intron-containing nascent RNA. We establish chromatin-RNA immunoprecipitation and show that FOS pre-mRNA is cotranscriptionally spliced. Notably, the topoisomerase I inhibitor camptothecin, which stalls elongating Pol II, increased cotranscriptional splicing factor accumulation and splicing in parallel. This provides direct evidence for a kinetic link between transcription, splicing factor recruitment and splicing catalysis.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                August 2012
                August 2012
                13 April 2012
                13 April 2012
                : 40
                : 14
                : 6850-6862
                Affiliations
                1Department of Biochemistry and 2Department of Chemistry, University of Leicester, Leicester LE1 9HN, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 116 2297012; Fax: +44 116 2297018; Email: eci@ 123456leicester.ac.uk
                Article
                gks322
                10.1093/nar/gks322
                3413131
                22505580
                ad5c69f3-5117-417c-8bf2-1bbc14953dda
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 February 2012
                : 19 March 2012
                : 23 March 2012
                Page count
                Pages: 13
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article