69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Motor rehabilitation using virtual reality

      review-article
      1 ,
      Journal of NeuroEngineering and Rehabilitation
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virtual Reality (VR) provides a unique medium suited to the achievement of several requirements for effective rehabilitation intervention. Specifically, therapy can be provided within a functional, purposeful and motivating context. Many VR applications present opportunities for individuals to participate in experiences, which are engaging and rewarding. In addition to the value of the rehabilitation experience for the user, both therapists and users benefit from the ability to readily grade and document the therapeutic intervention using various systems. In VR, advanced technologies are used to produce simulated, interactive and multi-dimensional environments. Visual interfaces including desktop monitors and head-mounted displays (HMDs), haptic interfaces, and real-time motion tracking devices are used to create environments allowing users to interact with images and virtual objects in real-time through multiple sensory modalities. Opportunities for object manipulation and body movement through virtual space provide frameworks that, in varying degrees, are perceived as comparable to similar opportunities in the real world. This paper reviews current work on motor rehabilitation using virtual environments and virtual reality and where possible, compares outcomes with those achieved in real-world applications.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.

          Current evidence indicates that repetitive motor behavior during motor learning paradigms can produce changes in representational organization in motor cortex. In a previous study, we trained adult squirrel monkeys on a repetitive motor task that required the retrieval of food pellets from a small-diameter well. It was found that training produced consistent task-related changes in movement representations in primary motor cortex (M1) in conjunction with the acquisition of a new motor skill. In the present study, we trained adult squirrel monkeys on a similar motor task that required pellet retrievals from a much larger diameter well. This large-well retrieval task was designed to produce repetitive use of a limited set of distal forelimb movements in the absence of motor skill acquisition. Motor activity levels, estimated by the total number of finger flexions performed during training, were matched between the two training groups. This experiment was intended to evaluate whether simple, repetitive motor activity alone is sufficient to produce representational plasticity in cortical motor maps. Detailed analysis of the motor behavior of the monkeys indicates that their retrieval behavior was highly successful and stereotypical throughout the training period, suggesting that no new motor skills were learned during the performance of the large-well retrieval task. Comparisons between pretraining and posttraining maps of M1 movement representations revealed no task-related changes in the cortical area devoted to individual distal forelimb movement representations. We conclude that repetitive motor activity alone does not produce functional reorganization of cortical maps. Instead, we propose that motor skill acquisition, or motor learning, is a prerequisite factor in driving representational plasticity in M1. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virtual reality-enhanced stroke rehabilitation.

            A personal computer (PC)-based desktop virtual reality (VR) system was developed for rehabilitating hand function in stroke patients. The system uses two input devices, a CyberGlove and a Rutgers Master II-ND (RMII) force feedback glove, allowing user interaction with a virtual environment. This consists of four rehabilitation routines, each designed to exercise one specific parameter of hand movement: range, speed, fractionation or strength. The use of performance-based target levels is designed to increase patient motivation and individualize exercise difficulty to a patient's current state. Pilot clinical trials have been performed using the above system combined with noncomputer tasks, such as pegboard insertion or tracing of two-dimensional (2-D) patterns. Three chronic stroke patients used this rehabilitation protocol daily for two weeks. Objective measurements showed that each patient showed improvement on most of the hand parameters over the course of the training. Subjective evaluation by the patients was also positive. This technical report focuses on this newly developed technology for VR rehabilitation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virtual reality-augmented rehabilitation for patients following stroke.

              Recent evidence indicates that intensive massed practice may be necessary to modify neural organization and effect recovery of motor skills in patients following stroke. Virtual reality (VR) technology has the capability of creating an interactive, motivating environment in which practice intensity and feedback can be manipulated to create individualized treatments to retrain movement. Three patients (ML, LE, and DK), who were in the chronic phase following stroke, participated in a 2-week training program (3 1/2 hours a day) including dexterity tasks on real objects and VR exercises. The VR simulations were targeted for range of motion, movement speed, fractionation, and force production. ML's function was the most impaired at the beginning of the intervention, but showed improvement in the thumb and fingers in range of motion and speed of movement. LE improved in fractionation and range of motion of his thumb and fingers. DK made the greatest gains, showing improvement in range of motion and strength of the thumb, velocity of the thumb and fingers, and fractionation. Two of the 3 patients improved on the Jebsen Test of Hand Function. The outcomes suggest that VR may be useful to augment rehabilitation of the upper limb in patients in the chronic phase following stroke.
                Bookmark

                Author and article information

                Journal
                J Neuroengineering Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                2004
                10 December 2004
                : 1
                : 10
                Affiliations
                [1 ]School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Canada
                Article
                1743-0003-1-10
                10.1186/1743-0003-1-10
                546406
                15679945
                ad65b2e7-78d3-4210-a9de-d63d079afaea
                Copyright © 2004 Sveistrup; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 November 2004
                : 10 December 2004
                Categories
                Review

                Neurosciences
                Neurosciences

                Comments

                Comment on this article