4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RosettaLigandEnsemble: A Small-Molecule Ensemble-Driven Docking Approach

      research-article
      ,
      ACS Omega
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RosettaLigand is a protein–small-molecule (ligand) docking software capable of predicting binding poses and is used for virtual screening of medium-sized ligand libraries. Structurally similar small molecules are generally found to bind in the same pose to one binding pocket, despite some prominent exceptions. To make use of this information, we have developed RosettaLigandEnsemble (RLE). RLE docks a superimposed ensemble of congeneric ligands simultaneously. The program determines a well-scoring overall pose for this superimposed ensemble before independently optimizing individual protein–small-molecule interfaces. In a cross-docking benchmark of 89 protein–small-molecule co-crystal structures across 20 biological systems, we found that RLE improved sampling efficiency in 62 cases, with an average change of 18%. In addition, RLE generated more consistent docking results within a congeneric series and was capable of rescuing the unsuccessful docking of individual ligands, identifying a nativelike top-scoring model in 10 additional cases. The improvement in RLE is driven by a balance between having a sizable common chemical scaffold and meaningful modifications to distal groups. The new ensemble docking algorithm will work well in conjunction with medicinal chemistry structure–activity relationship (SAR) studies to more accurately recapitulate protein–ligand interfaces. We also tested whether optimizing the rank correlation of RLE-binding scores to SAR data in the refinement step helps the high-resolution positioning of the ligand. However, no significant improvement was observed.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The PDBbind database: methodologies and updates.

          We have developed the PDBbind database to provide a comprehensive collection of binding affinities for the protein-ligand complexes in the Protein Data Bank (PDB). This paper gives a full description of the latest version, i.e., version 2003, which is an update to our recently reported work. Out of 23 790 entries in the PDB release No.107 (January 2004), 5897 entries were identified as protein-ligand complexes that meet our definition. Experimentally determined binding affinities (K(d), K(i), and IC(50)) for 1622 of these were retrieved from the references associated with these complexes. A total of 900 complexes were selected to form a "refined set", which is of particular value as a standard data set for docking and scoring studies. All of the final data, including binding affinity data, reference citations, and processed structural files, have been incorporated into the PDBbind database accessible on-line at http:// www.pdbbind.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relaxation of backbone bond geometry improves protein energy landscape modeling.

            A key issue in macromolecular structure modeling is the granularity of the molecular representation. A fine-grained representation can approximate the actual structure more accurately, but may require many more degrees of freedom than a coarse-grained representation and hence make conformational search more challenging. We investigate this tradeoff between the accuracy and the size of protein conformational search space for two frequently used representations: one with fixed bond angles and lengths and one that has full flexibility. We performed large-scale explorations of the energy landscapes of 82 protein domains under each model, and find that the introduction of bond angle flexibility significantly increases the average energy gap between native and non-native structures. We also find that incorporating bonded geometry flexibility improves low resolution X-ray crystallographic refinement. These results suggest that backbone bond angle relaxation makes an important contribution to native structure energetics, that current energy functions are sufficiently accurate to capture the energetic gain associated with subtle deformations from chain ideality, and more speculatively, that backbone geometry distortions occur late in protein folding to optimize packing in the native state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RosettaLigand docking with full ligand and receptor flexibility.

              Computational docking of small-molecule ligands into protein receptors is an important tool for modern drug discovery. Although conformational adjustments are frequently observed between the free and ligand-bound states, the conformational flexibility of the protein is typically ignored in protein-small molecule docking programs. We previously described the program RosettaLigand, which leverages the Rosetta energy function and side-chain repacking algorithm to account for flexibility of all side chains in the binding site. Here we present extensions to RosettaLigand that incorporate full ligand flexibility as well as receptor backbone flexibility. Including receptor backbone flexibility is found to produce more correct docked complexes and to lower the average RMSD of the best-scoring docked poses relative to the rigid-backbone results. On a challenging set of retrospective and prospective cross-docking tests, we find that the top-scoring ligand pose is correctly positioned within 2 A RMSD for 64% (54/85) of cases overall.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                02 April 2018
                30 April 2018
                : 3
                : 4
                : 3655-3664
                Affiliations
                [1]Center for Structural Biology, Department of Chemistry, Vanderbilt University , 465 21st Avenue South, Nashville, Tennessee 37221, United States
                Author notes
                Article
                10.1021/acsomega.7b02059
                5928483
                ad74f8e8-6d67-4fad-82c3-3919c5a31931
                Copyright © 2018 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 24 December 2017
                : 20 March 2018
                Categories
                Article
                Custom metadata
                ao7b02059
                ao-2017-02059y

                Comments

                Comment on this article