23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cannabinoid Receptor 1 and Fatty Acid Amide Hydrolase Contribute to Operant Sensation Seeking in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large body of evidence in humans and preclinical models supports a role for the endocannabinoid system in the proper execution of motivated or goal-directed behaviors. Operant sensation seeking (OSS) is a task that uses varied sensory stimuli as a reinforcer to maintain operant responding in mice. The purpose of the studies in this report was to begin to explore the role of endocannabinoid signaling in OSS utilizing cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) knock out mice. Compared to wild type littermate controls, CB1R knock out mice exhibited significantly fewer active responses and earned significantly fewer reinforcers in fixed ratio and progressive ratio schedules. On the other hand, FAAH knock out mice exhibited increased active responses and earned more reinforcers than wild type littermates in fixed ratio but not progressive ratio schedules. These findings support the role of endocannabinoid signaling in motivated behaviors and also expand our understanding of the signaling processes involved in OSS.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy.

          Drug self-administration studies have recently employed progressive ratio (PR) schedules to examine psychostimulant and opiate reinforcement. This review addresses the technical, statistical, and theoretical issues related to the use of the PR schedule in self-administration studies in rats. Session parameters adopted for use in our laboratory and the considerations relevant to them are described. The strengths and weaknesses of the PR schedule are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase.

            The medicinal properties of marijuana have been recognized for centuries, but clinical and societal acceptance of this drug of abuse as a potential therapeutic agent remains fiercely debated. An attractive alternative to marijuana-based therapeutics would be to target the molecular pathways that mediate the effects of this drug. To date, these neural signaling pathways have been shown to comprise a cannabinoid receptor (CB(1)) that binds the active constituent of marijuana, tetrahydrocannabinol (THC), and a postulated endogenous CB(1) ligand anandamide. Although anandamide binds and activates the CB(1) receptor in vitro, this compound induces only weak and transient cannabinoid behavioral effects in vivo, possibly a result of its rapid catabolism. Here we show that mice lacking the enzyme fatty acid amide hydrolase (FAAH(-/-)) are severely impaired in their ability to degrade anandamide and when treated with this compound, exhibit an array of intense CB(1)-dependent behavioral responses, including hypomotility, analgesia, catalepsy, and hypothermia. FAAH(-/-)-mice possess 15-fold augmented endogenous brain levels of anandamide and display reduced pain sensation that is reversed by the CB(1) antagonist SR141716A. Collectively, these results indicate that FAAH is a key regulator of anandamide signaling in vivo, setting an endogenous cannabinoid tone that modulates pain perception. FAAH may therefore represent an attractive pharmaceutical target for the treatment of pain and neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocannabinoid signalling in reward and addiction.

              Brain endocannabinoid (eCB) signalling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated eCB signalling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired eCB signalling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states and cravings that propel addiction. Understanding the contributions of eCB disruptions to behavioural and physiological traits provides insight into the eCB influence on addiction vulnerability.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 July 2017
                August 2017
                : 18
                : 8
                : 1635
                Affiliations
                Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; ahelfand@ 123456mcw.edu
                Author notes
                [* ]Correspondence: colsen@ 123456mcw.edu (C.M.O.); chillard@ 123456mcw.edu (C.J.H.); Tel.: +1-414-955-8493 (C.J.H.)
                Author information
                https://orcid.org/0000-0003-2700-0310
                Article
                ijms-18-01635
                10.3390/ijms18081635
                5578025
                28749428
                ad788910-8dcd-4a4c-ae84-cd54c4895d1a
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 June 2017
                : 25 July 2017
                Categories
                Article

                Molecular biology
                knock out,reward,motivation,novelty seeking,behavior
                Molecular biology
                knock out, reward, motivation, novelty seeking, behavior

                Comments

                Comment on this article