3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Luminescent Gold Nanoparticles with Efficient Renal Clearance

      , , , ,
      Angewandte Chemie
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles.

          Nanoscale objects are typically internalized by cells into membrane-bounded endosomes and fail to access the cytosolic cell machinery. Whereas some biomacromolecules may penetrate or fuse with cell membranes without overt membrane disruption, no synthetic material of comparable size has shown this property yet. Cationic nano-objects pass through cell membranes by generating transient holes, a process associated with cytotoxicity. Studies aimed at generating cell-penetrating nanomaterials have focused on the effect of size, shape and composition. Here, we compare membrane penetration by two nanoparticle 'isomers' with similar composition (same hydrophobic content), one coated with subnanometre striations of alternating anionic and hydrophobic groups, and the other coated with the same moieties but in a random distribution. We show that the former particles penetrate the plasma membrane without bilayer disruption, whereas the latter are mostly trapped in endosomes. Our results offer a paradigm for analysing the fundamental problem of cell-membrane-penetrating bio- and macro-molecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size.

            Purpose of the present research work was to evaluate the biological distribution of differently size gold nanoparticles (NP) up on intravenous administration in mice. Another objective was to study effect of particle size on biological distribution of gold NP to enable their diverse applications in nanotechnology. Gold NP of different particle sizes, mainly 15, 50, 100 and 200 nm, were synthesized by modifying citrate ion concentration. Synthesized gold nanoparticles were characterized by SEM and their size distribution was studied by particle size analyzer. Gold NP was suspended in sodium alginate solution (0.5%, w/v) and administered to mice (1g/kg, intravenously) [n=3]. After 24h of administration of gold NP, blood was collected under light ether anesthesia, mice were sacrificed by cervical dislocation and various tissues/organs were removed. The tissues were then washed with saline, homogenized and lysed with aqua regia. The determination of gold in samples was carried out quantitatively by inductively coupled plasma mass spectrometry (ICP-MS). SEM study revealed spherical morphology of gold NP with narrow particle size distribution. Biodistribution study revealed gold NPs of all sizes were mainly accumulated in organs like liver, lung and spleen. The accumulation of gold NP in various tissues was found to be depending on particle size. 15 nm gold NP revealed higher amount of gold and number of particles in all the tissues including blood, liver, lung, spleen, kidney, brain, heart, stomach. Interestingly, 15 and 50 nm gold NP were able to pass blood-brain barrier as evident from gold concentration in brain. Two-hundred nanometers gold NP showed very minute presence in organs including blood, brain, stomach and pancreas. The results revealed that tissue distribution of gold nanoparticles is size-dependent with the smallest 15 nm nanoparticles showing the most widespread organ distribution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly fluorescent noble-metal quantum dots.

              Highly fluorescent, water-soluble, few-atom noble-metal quantum dots have been created that behave as multielectron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near infrared. These molecular metals exhibit highly polarizable transitions and scale in size according to the simple relation E(Fermi)/N(1/3), predicted by the free-electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons, and these conduction-electron transitions are the low-number limit of the plasmon-the collective dipole oscillations occurring when a continuous density of states is reached. Providing the missing link between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy-transfer pairs, and light-emitting sources in nanoscale optoelectronics.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley
                00448249
                March 28 2011
                March 28 2011
                March 04 2011
                : 123
                : 14
                : 3226-3230
                Article
                10.1002/ange.201007321
                ad85b0eb-8857-48c8-9750-556884f6ba14
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article