75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          Activating mutations in the gene encoding epidermal growth factor receptor (EGFR) can confer sensitivity to EGFR tyrosine kinase inhibitors such as gefitinib in patients with advanced non-small-cell lung cancer. Testing for mutations in EGFR is therefore an important step in the treatment-decision pathway. We reviewed reported methods for EGFR mutation testing in patients with lung cancer, initially focusing on studies involving standard tumour tissue samples. We also evaluated data on the use of cytology samples in order to determine their suitability for EGFR mutation analysis.

          Methods

          We searched the MEDLINE database for studies reporting on EGFR mutation testing methods in patients with lung cancer.

          Results

          Various methods have been investigated as potential alternatives to the historical standard for EGFR mutation testing, direct DNA sequencing. Many of these are targeted methods that specifically detect the most common EGFR mutations. The development of targeted mutation testing methods and commercially available test kits has enabled sensitive, rapid and robust analysis of clinical samples. The use of screening methods, subsequent to sample micro dissection, has also ensured that identification of more rare, uncommon mutations is now feasible. Cytology samples including fine needle aspirate and pleural effusion can be used successfully to determine EGFR mutation status provided that sensitive testing methods are employed.

          Conclusions

          Several different testing methods offer a more sensitive alternative to direct sequencing for the detection of common EGFR mutations. Evidence published to date suggests cytology samples are viable alternatives for mutation testing when tumour tissue samples are not available.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.

          Estimates of the worldwide incidence and mortality from 27 cancers in 2008 have been prepared for 182 countries as part of the GLOBOCAN series published by the International Agency for Research on Cancer. In this article, we present the results for 20 world regions, summarizing the global patterns for the eight most common cancers. Overall, an estimated 12.7 million new cancer cases and 7.6 million cancer deaths occur in 2008, with 56% of new cancer cases and 63% of the cancer deaths occurring in the less developed regions of the world. The most commonly diagnosed cancers worldwide are lung (1.61 million, 12.7% of the total), breast (1.38 million, 10.9%) and colorectal cancers (1.23 million, 9.7%). The most common causes of cancer death are lung cancer (1.38 million, 18.2% of the total), stomach cancer (738,000 deaths, 9.7%) and liver cancer (696,000 deaths, 9.2%). Cancer is neither rare anywhere in the world, nor mainly confined to high-resource countries. Striking differences in the patterns of cancer from region to region are observed. Copyright © 2010 UICC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.

            Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.

              Previous, uncontrolled studies have suggested that first-line treatment with gefitinib would be efficacious in selected patients with non-small-cell lung cancer. In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin-paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin-paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin-paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin-paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin-paclitaxel group. Gefitinib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                J Clin Pathol
                J. Clin. Pathol
                jclinpath
                jcp
                Journal of Clinical Pathology
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0021-9746
                1472-4146
                February 2013
                20 November 2012
                : 66
                : 2
                : 79-89
                Affiliations
                [1 ]AstraZeneca , Macclesfield, Alderley Park, UK
                [2 ]AstraZeneca R&D , Shanghai, China
                [3 ]AstraZeneca SA Hellas , Athens, Greece
                Author notes
                [Correspondence to ] Dr Gillian Ellison, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; gillian.ellison@ 123456astrazeneca.com
                Article
                jclinpath-2012-201194
                10.1136/jclinpath-2012-201194
                3582044
                23172555
                ad888f3b-a53f-423d-a672-b08bcd9bed60
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/3.0/ and http://creativecommons.org/licenses/by-nc/3.0/legalcode

                History
                : 10 September 2012
                : 19 October 2012
                : 22 October 2012
                Categories
                1506
                1507
                Review
                Custom metadata
                editors-choice
                unlocked

                Pathology
                cytology,egfr,lung cancer,methodology
                Pathology
                cytology, egfr, lung cancer, methodology

                Comments

                Comment on this article

                scite_

                Similar content178

                Cited by98

                Most referenced authors1,997