121
views
0
recommends
+1 Recommend
1 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Estrogen and cancer.

      Annual review of physiology
      Breast Neoplasms, epidemiology, physiopathology, Endometrial Neoplasms, Estrogens, adverse effects, physiology, Female, Humans, Neoplasms, Receptors, Estrogen, Risk Factors, Signal Transduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estrogen exhibits a broad spectrum of physiological functions ranging from regulation of the menstrual cycle and reproduction to modulation of bone density, brain function, and cholesterol mobilization. Despite the beneficial actions of endogenous estrogen, sustained exposure to exogenous estrogen is a well-established risk factor for various cancers. We summarize our current understanding of the molecular mechanisms of estrogen signaling in normal and cancer cells and discuss the major challenges to existing antiestrogen therapies.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Biological determinants of endocrine resistance in breast cancer.

          Endocrine therapies targeting oestrogen action (anti-oestrogens, such as tamoxifen, and aromatase inhibitors) decrease mortality from breast cancer, but their efficacy is limited by intrinsic and acquired therapeutic resistance. Candidate molecular biomarkers and gene expression signatures of tamoxifen response emphasize the importance of deregulation of proliferation and survival signalling in endocrine resistance. However, definition of the specific genetic lesions and molecular processes that determine clinical endocrine resistance is incomplete. The development of large-scale computational and genetic approaches offers the promise of identifying the mediators of endocrine resistance that may be exploited as potential therapeutic targets and biomarkers of response in the clinic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen receptors: how do they signal and what are their targets.

            During the past decade there has been a substantial advance in our understanding of estrogen signaling both from a clinical as well as a preclinical perspective. Estrogen signaling is a balance between two opposing forces in the form of two distinct receptors (ER alpha and ER beta) and their splice variants. The prospect that these two pathways can be selectively stimulated or inhibited with subtype-selective drugs constitutes new and promising therapeutic opportunities in clinical areas as diverse as hormone replacement, autoimmune diseases, prostate and breast cancer, and depression. Molecular biological, biochemical, and structural studies have generated information which is invaluable for the development of more selective and effective ER ligands. We have also become aware that ERs do not function by themselves but require a number of coregulatory proteins whose cell-specific expression explains some of the distinct cellular actions of estrogen. Estrogen is an important morphogen, and many of its proliferative effects on the epithelial compartment of glands are mediated by growth factors secreted from the stromal compartment. Thus understanding the cross-talk between growth factor and estrogen signaling is essential for understanding both normal and malignant growth. In this review we focus on several of the interesting recent discoveries concerning estrogen receptors, on estrogen as a morphogen, and on the molecular mechanisms of anti-estrogen signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide analysis of estrogen receptor binding sites.

              The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.
                Bookmark

                Author and article information

                Journal
                23043248
                10.1146/annurev-physiol-030212-183708

                Chemistry
                Breast Neoplasms,epidemiology,physiopathology,Endometrial Neoplasms,Estrogens,adverse effects,physiology,Female,Humans,Neoplasms,Receptors, Estrogen,Risk Factors,Signal Transduction

                Comments

                Comment on this article