8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          High-performance medicine: the convergence of human and artificial intelligence

          Eric Topol (2019)
          The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissecting racial bias in an algorithm used to manage the health of populations

              Health systems rely on commercial prediction algorithms to identify and help patients with complex health needs. We show that a widely used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black patients receiving additional help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than illness, but unequal access to care means that we spend less money caring for Black patients than for White patients. Thus, despite health care cost appearing to be an effective proxy for health by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of convenient, seemingly effective proxies for ground truth can be an important source of algorithmic bias in many contexts.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                IEEE Access
                IEEE Access
                Institute of Electrical and Electronics Engineers (IEEE)
                2169-3536
                2024
                2024
                : 12
                : 31014-31035
                Affiliations
                [1 ]Faculty of Information Technology, Salim Habib University, Karachi, Pakistan
                Article
                10.1109/ACCESS.2024.3369912
                ad8f2fde-7ca3-45ca-923f-68435d58a81e
                © 2024

                https://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article