7
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards integrated surveillance-response systems for the prevention of future pandemics

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most human pathogens originate from non-human hosts and certain pathogens persist in animal reservoirs. The transmission of such pathogens to humans may lead to self-sustaining chains of transmission. These pathogens represent the highest risk for future pandemics. For their prevention, the transmission over the species barrier — although rare — should, by all means, be avoided. In the current COVID-19 pandemic, surprisingly though, most of the current research concentrates on the control by drugs and vaccines, while comparatively little scientific inquiry focuses on future prevention. Already in 2012, the World Bank recommended to engage in a systemic One Health approach for zoonoses control, considering integrated surveillance-response and control of human and animal diseases for primarily economic reasons. First examples, like integrated West Nile virus surveillance in mosquitos, wild birds, horses and humans in Italy show evidence of financial savings from a closer cooperation of human and animal health sectors. Provided a zoonotic origin can be ascertained for the COVID-19 pandemic, integrated wildlife, domestic animal and humans disease surveillance-response may contribute to prevent future outbreaks. In conclusion, the earlier a zoonotic pathogen can be detected in the environment, in wildlife or in domestic animals; and the better human, animal and environmental surveillance communicate with each other to prevent an outbreak, the lower are the cumulative costs.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A pneumonia outbreak associated with a new coronavirus of probable bat origin

          Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From “one medicine” to “one health” and systemic approaches to health and well-being☆

            Faced with complex patterns of global change, the inextricable interconnection of humans, pet animals, livestock and wildlife and their social and ecological environment is evident and requires integrated approaches to human and animal health and their respective social and environmental contexts. The history of integrative thinking of human and animal health is briefly reviewed from early historical times, to the foundation of universities in Europe, up to the beginning of comparative medicine at the end of the 19th century. In the 20th century, Calvin Schwabe coined the concept of “one medicine”. It recognises that there is no difference of paradigm between human and veterinary medicine and both disciplines can contribute to the development of each other. Considering a broader approach to health and well-being of societies, the original concept of “one medicine” was extended to “one health” through practical implementations and careful validations in different settings. Given the global health thinking in recent decades, ecosystem approaches to health have emerged. Based on complex ecological thinking that goes beyond humans and animals, these approaches consider inextricable linkages between ecosystems and health, known as “ecosystem health”. Despite these integrative conceptual and methodological developments, large portions of human and animal health thinking and actions still remain in separate disciplinary silos. Evidence for added value of a coherent application of “one health” compared to separated sectorial thinking is, however, now growing. Integrative thinking is increasingly being considered in academic curricula, clinical practice, ministries of health and livestock/agriculture and international organizations. Challenges remain, focusing around key questions such as how does “one health” evolve and what are the elements of a modern theory of health? The close interdependence of humans and animals in their social and ecological context relates to the concept of “human-environmental systems”, also called “social-ecological systems”. The theory and practice of understanding and managing human activities in the context of social-ecological systems has been well-developed by members of The Resilience Alliance and was used extensively in the Millennium Ecosystem Assessment, including its work on human well-being outcomes. This in turn entails systems theory applied to human and animal health. Examples of successful systems approaches to public health show unexpected results. Analogous to “systems biology” which focuses mostly on the interplay of proteins and molecules at a sub-cellular level, a systemic approach to health in social-ecological systems (HSES) is an inter- and trans-disciplinary study of complex interactions in all health-related fields. HSES moves beyond “one health” and “eco-health”, expecting to identify emerging properties and determinants of health that may arise from a systemic view ranging across scales from molecules to the ecological and socio-cultural context, as well from the comparison with different disease endemicities and health systems structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission dynamics and economics of rabies control in dogs and humans in an African city.

              Human rabies in developing countries can be prevented through interventions directed at dogs. Potential cost-savings for the public health sector of interventions aimed at animal-host reservoirs should be assessed. Available deterministic models of rabies transmission between dogs were extended to include dog-to-human rabies transmission. Model parameters were fitted to routine weekly rabid-dog and exposed-human cases reported in N'Djaména, the capital of Chad. The estimated transmission rates between dogs (beta(d)) were 0.0807 km2/(dogs x week) and between dogs and humans (beta(dh)) 0.0002 km2/(dogs x week). The effective reproductive ratio (R(e)) at the onset of our observations was estimated at 1.01, indicating low-level endemic stability of rabies transmission. Human rabies incidence depended critically on dog-related transmission parameters. We simulated the effects of mass dog vaccination and the culling of a percentage of the dog population on human rabies incidence. A single parenteral dog rabies-mass vaccination campaign achieving a coverage of least 70% appears to be sufficient to interrupt transmission of rabies to humans for at least 6 years. The cost-effectiveness of mass dog vaccination was compared to postexposure prophylaxis (PEP), which is the current practice in Chad. PEP does not reduce future human exposure. Its cost-effectiveness is estimated at US $46 per disability adjusted life-years averted. Cost-effectiveness for PEP, together with a dog-vaccination campaign, breaks even with cost-effectiveness of PEP alone after almost 5 years. Beyond a time-frame of 7 years, it appears to be more cost-effective to combine parenteral dog-vaccination campaigns with human PEP compared to human PEP alone.
                Bookmark

                Author and article information

                Contributors
                jakob.zinsstag@swisstph.ch
                Journal
                Infect Dis Poverty
                Infect Dis Poverty
                Infectious Diseases of Poverty
                BioMed Central (London )
                2095-5162
                2049-9957
                7 October 2020
                7 October 2020
                2020
                : 9
                : 140
                Affiliations
                [1 ]GRID grid.416786.a, ISNI 0000 0004 0587 0574, Swiss Tropical and Public Health Institute, ; Basel, Switzerland
                [2 ]GRID grid.6612.3, ISNI 0000 0004 1937 0642, University of Basel, ; Basel, Switzerland
                [3 ]National Institute of Parasitic Diseases at the Chinese Center for Disease Control and Prevention & Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, People’s Republic of China
                [4 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, School of Global Health, Chinese Center for Tropical Diseases Research - Shanghai Jiao Tong University School of Medicine, ; Shanghai, People’s Republic of China
                Author information
                http://orcid.org/0000-0002-8899-6097
                Article
                757
                10.1186/s40249-020-00757-5
                7539270
                33028426
                ad94e882-558a-4fb6-8485-eb0343d1b6f6
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 1 July 2020
                : 22 September 2020
                Funding
                Funded by: National Key Research and Development Programme of China
                Award ID: 2016YFC1202000
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81973108
                Award Recipient :
                Categories
                Opinion
                Custom metadata
                © The Author(s) 2020

                integrated surveillance-response,one health,pandemics,transdisciplinarity,zoonoses

                Comments

                Comment on this article