Blog
About

8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gadolinium oxide (Gd 2O 3) nanoparticles (GNPs) are applied in industrial products, for example, additives, optical glass, and catalysis. There are various suggestions of metal nanoparticles paradigm but the underlying basic mechanism about the toxicity of metal nanoparticles, for example GNPs, remains unclear. This experiment was done to measure the effective toxicity of GNPs (10, 25, 50, and 100 µg/mL) over 24 and 48 h and to evaluate toxicity mechanism in human neuronal (SH-SY5Y) cells. GNPs produced reactive oxygen species (ROS), as evaluated by 2′, 7′-dichlorodihydrofluorescein diacetate. Due to incorporation into cells, GNPs generated ROS in a concentration- and time-dependent manner. To determine the toxicity of GNP mechanism related to ROS, we also found chromosome condensation and dysfunction of mitochondrial membrane potential (MMP) after exposure of GNPs. Furthermore, the increased cell apoptosis rate and DNA fragmentation were closely related to the increased dose and exposure duration of GNPs in SH-SY5Y cells. The reduction in MMP with a simultaneous increase in the expression of bax/bcl2 gene ratio indicated that mitochondria-mediated pathway involved in GNPs induced apoptosis. Thus, our finding has provided valuable insights into the probable mechanism of apoptosis caused by GNPs at in vitro level.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

              A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                21 June 2017
                : 12
                : 4541-4551
                Affiliations
                [1 ]Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
                [2 ]Department of Chemistry, Maulana Azad National Institute of Technology Bhopal, MP, India
                [3 ]Department of Biology, Faculty of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
                Author notes
                Correspondence: Huma Ali, Department of Chemistry, Maulana Azad National Institute of Technology, Link Road Number 3, Near Kali Mata Mandir, Bhopal, Madhya Pradesh 462003, India, Email humali.manit@ 123456yahoo.com
                Article
                ijn-12-4541
                10.2147/IJN.S139326
                5485892
                © 2017 Alarifi et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Molecular medicine

                dna fragmentation, ros, apoptosis, sh-sy5y cells, gnps

                Comments

                Comment on this article