27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle.

      The Journal of Physiology
      Adult, Biological Availability, Creatine Kinase, blood, Exercise, physiology, Glycogen, metabolism, HSP72 Heat-Shock Proteins, Heat-Shock Proteins, genetics, Humans, Leg, Male, Muscle Contraction, Muscle, Skeletal, RNA, Messenger, Reference Values

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To test the hypothesis that a decrease in intramuscular glycogen availability may stimulate heat shock protein expression, seven men depleted one leg of muscle glycogen the day before performing 4-5 h of exhaustive, two-legged knee extensor exercise at 40 % of leg peak power output. Subjects then rested for a further 3 h. Muscle biopsies were obtained from the depleted and control leg before, immediately after and 3 h into recovery from exercise. These samples were analysed for muscle glycogen, and HSP72 gene and protein expression. In addition, catheters were placed in one femoral artery and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery for the measurement of arterial-venous differences in serum HSP72. Plasma creatine kinase (CK) was also measured from arterial blood samples. Pre-exercise muscle glycogen content was 40 % lower in the depleted compared with the control leg and this difference was maintained throughout the experiment (P < 0.05; main treatment effect). Neither HSP72 gene nor protein expression was different pre-exercise. However, both HSP72 gene and protein increased (P < 0.05) post-exercise in the depleted leg, but not in the control leg. Exercise did not increase plasma CK concentrations and we were unable to detect HSP72 in the serum of any samples. These results demonstrate that while acute, concentric exercise is capable of increasing HSP72 in human skeletal muscle, it does so only when glycogen is reduced to relatively low levels. Hence, our data suggest that HSP72 protein expression is related to glycogen availability. In addition, because CK did not increase and we found no evidence of HSP72 in the venous effluent, our data suggest that skeletal muscle is impermeable to HSP72.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6.

          1. Plasma interleukin (IL)-6 concentration is increased with exercise and it has been demonstrated that contracting muscles can produce IL-The question addressed in the present study was whether the IL-6 production by contracting skeletal muscle is of such a magnitude that it can account for the IL-6 accumulating in the blood. 2. This was studied in six healthy males, who performed one-legged dynamic knee extensor exercise for 5 h at 25 W, which represented 40% of peak power output (Wmax). Arterial-femoral venous (a-fv) differences over the exercising and the resting leg were obtained before and every hour during the exercise. Leg blood flow was measured in parallel by the ultrasound Doppler technique. IL-6 was measured by enzyme-linked immunosorbent assay (ELISA). 3. Arterial plasma concentrations for IL-6 increased 19-fold compared to rest. The a-fv difference for IL-6 over the exercising leg followed the same pattern as did the net IL-6 release. Over the resting leg, there was no significant a-fv difference or net IL-6 release. The work was produced by 2.5 kg of active muscle, which means that during the last 2 h of exercise, the median IL-6 production was 6.8 ng min-1 (kg active muscle)-1 (range, 3.96-9.69 ng min-1 kg-1). 4. The net IL-6 release from the muscle over the last 2 h of exercise was 17-fold higher than the elevation in arterial IL-6 concentration and at 5 h of exercise the net release during 1 min was half of the IL-6 content in the plasma. This indicates a very high turnover of IL-6 during muscular exercise. We suggest that IL-6 produced by skeletal contracting muscle contributes to the maintenance of glucose homeostasis during prolonged exercise.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A comparison of three methods of glycogen measurement in tissues.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise increases serum Hsp72 in humans.

              Recent evidence suggests that heat shock proteins (Hsps) may have an important systemic role as a signal to activate the immune system. Since acute exercise is known to induce Hsp72 (the inducible form of the 70-kDa family of Hsp) in a variety of tissues including contracting skeletal muscle, we hypothesized that such exercise would result in the release of Hsp72 from stressed cells into the blood. Six humans (5 males, 1 female) ran on a treadmill for 60 minutes at a workload corresponding to 70% of their peak oxygen consumption. Blood was sampled from a forearm vein at rest (R), 30 minutes during exercise, immediately postexercise (60 minutes), and 2, 8, and 24 hours after exercise. These samples were analyzed for serum Hsp72 protein. In addition, plasma creatine kinase (CK) was measured at these time points as a crude marker of muscle damage. With the exception of the sample collected at 30 minutes, muscle biopsies (n = 5 males) were also obtained from the vastus lateralis at the time of blood sampling and analyzed for Hsp72 gene and protein expression. Serum Hsp72 protein increased from rest, both during and after exercise (0.13 0.10 vs 0.87+/-0.24 and 1.02+/-0.41 ng/mL at rest, 30 and 60 minutes, respectively, P < 0.05, mean SE). In addition, plasma CK was elevated (P < 0.05) 8 hours postexercise. Skeletal muscle Hsp72 mRNA expression increased 6.5-fold (P < 0.05) from rest 2 hours postexercise, and although there was a tendency for Hsp72 protein expression to be elevated 2 and 8 hours following exercise compared with rest, results were not statistically significant. The increase in serum Hsp72 preceded any increase in Hsp72 gene or protein expression in contracting muscle, suggesting that Hsp72 was released from other tissues or organs. This study is the first to demonstrate that acute exercise can increase Hsp72 in the peripheral circulation, suggesting that during stress these proteins may indeed have a systemic role.
                Bookmark

                Author and article information

                Comments

                Comment on this article