Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The impact of 30 ml/kg hydroxyethyl starch 130/0.4 vs hydroxyethyl starch 130/0.42 on coagulation in patients undergoing abdominal surgery

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Background & objectives:

      Hydroxyethyl starches (HES) 130/0.4 (Voluven®) and 130/0.42 (Venofundin®) impair coagulation less than older HES solutions with higher molecular weight and molar substitution. Thus, these may be used in high doses up to 50 ml/kg/day. The aim of this study was to investigate and compare the effects of HES 130/0.4 versus HES 130/0.42 on coagulation after the intraoperative infusion of 30 ml/kg in patients undergoing major abdominal surgery.

      Methods:

      Fifty two patients scheduled for elective major abdominal surgery were randomized to receive 30 ml/kg of HES 130/0.4 or HES 130/0.42 intraoperatively. Coagulation variables were assessed before and after infusion of the colloid solution using thrombelastography.

      Results:

      Data from 49 patients, 25 patients in the HES 130/0.4 and 24 in the HES 130/0.42 group, were analyzed. Measurements of reaction time, kinetic time, α-angle, maximum amplitude and coagulation index before and after colloid infusion did not differ between the groups. Within each group, after colloid infusion, reaction time did not change significantly, while α-angle, maximum amplitude and coagulation index values were significantly decreased (P<0.01, P<0.001 and P<0.001, respectively in HES 130/0.4 group and P<0.01, P<0.001 and P<0.01, respectively in HES 130/0.42 group). Kinetic time was significantly increased (P<0.001) in both the groups. In both groups, all thrombelastographic measurements after colloid infusion were found within normal limits.

      Interpretation & conclusions:

      HES 130/0.4 and HES 130/0.42 showed similar, not clinically significant effects on coagulation, as assessed by thrombelastography, when a dose of 30 ml/kg was administered in patients undergoing major abdominal surgery.

      Related collections

      Most cited references 25

      • Record: found
      • Abstract: found
      • Article: not found

      Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices.

      Perioperative monitoring of blood coagulation is critical to better understand causes of hemorrhage, to guide hemostatic therapies, and to predict the risk of bleeding during the consecutive anesthetic or surgical procedures. Point-of-care (POC) coagulation monitoring devices assessing the viscoelastic properties of whole blood, i.e., thrombelastography, rotation thrombelastometry, and Sonoclot analysis, may overcome several limitations of routine coagulation tests in the perioperative setting. The advantage of these techniques is that they have the potential to measure the clotting process, starting with fibrin formation and continue through to clot retraction and fibrinolysis at the bedside, with minimal delays. Furthermore, the coagulation status of patients is assessed in whole blood, allowing the plasmatic coagulation system to interact with platelets and red cells, and thereby providing useful additional information on platelet function. Viscoelastic POC coagulation devices are increasingly being used in clinical practice, especially in the management of patients undergoing cardiac and liver surgery. Furthermore, they provide useful information in a large variety of clinical scenarios, e.g., massive hemorrhage, assessment of hypo- and hypercoagulable states, guiding pro- and anticoagulant therapies, and in diagnosing of a surgical bleeding. A surgical etiology of bleeding has to be considered when viscoelastic test results are normal. In summary, viscoelastic POC coagulation devices may help identify the cause of bleeding and guide pro- and anticoagulant therapies. To ensure optimal accuracy and performance, standardized procedures for blood sampling and handling, strict quality controls and trained personnel are required.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Effects of hydroxyethyl starch solutions on hemostasis.

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          An international view of hydroxyethyl starches.

          Hydroxyethyl starch (HES) is one of the most frequently used plasma substitutes. A variety of different HES solutions exist worldwide, which differ greatly in their pharmacological properties. HES is classified according to its manufactured or in vitro molecular weight (MW) into high MW (450-480 kDa), medium MW (200 kDa), and low MW (70 kDa) starch preparations. However, this is not sufficient, because as HES is metabolized in vivo, its MW changes, and it is the in vivo MW which is responsible for the therapeutic and adverse effects of each HES. The rate of metabolization depends mainly on the degree of hydroxyethyl substitution (ranging from 0.4 to 0.7), and the C2/C6 ratio of hydroxyethylation. A high degree of substitution and a high C2/C6 ratio lead to a slow metabolization of HES, resulting in a large in vivo MW. Slowly degradable high MW HES 450/0.7 and medium MW HES 200/0.62 have a high in vivo MW and are eliminated slowly via the kidneys. As a result, these starches have a relatively long-lasting volume effect. When infusing higher volumes (>1500 ml) are infused, large molecules accumulate in the plasma. This can result in bleeding complications due to decreased factor VIII/von Willebrand factor, platelet function defects, incorporation into fibrin clots, and an unfavorable effect on rheological parameters. Rapidly degradable medium MW HES 200/0.5 or low MW HES 70/0.5 are quickly split in vivo into smaller, more favorable molecule sizes, resulting in faster renal elimination, shorter volume effect, and fewer adverse effects on coagulation and rheological parameters. For historical and marketing reasons, only slowly degradable, high MW HES (480/0.7) is available in the United States. In Europe, a large variety of HES solutions are available, dominated by medium MW, easily degradable HES (200/0.5). Because of increasing international competition and the availability of newly developed starches, it is important to be aware of the pharmacological properties of HES and the advantages and disadvantages of the individual preparations.
            Bookmark

            Author and article information

            Affiliations
            Department of Anesthesiology, Aretaieio Hospital, Medical School, University of Athens, Athens, Greece
            Author notes
            Reprint requests: Dr. C. Staikou, Department of Anesthesiology, Aretaieio Hospital, Medical School, University of Athens, 76 Vassilissis. Sophias Ave., 11528, Athens, Greece e-mail: c_staikou@123456yahoo.gr
            Journal
            Indian J Med Res
            Indian J. Med. Res
            IJMR
            The Indian Journal of Medical Research
            Medknow Publications & Media Pvt Ltd (India)
            0971-5916
            0975-9174
            September 2012
            : 136
            : 3
            : 445-450
            23041738
            3510891
            IJMR-136-445
            Copyright: © The Indian Journal of Medical Research

            This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Original Article

            Medicine

            hydroxyethyl starch, thombelastography, colloids, abdominal surgery, coagulation

            Comments

            Comment on this article