58
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans.

          Graphical Abstract

          Highlights

          • Vaccines based on the P. falciparum merozoite antigen PfRH5 were tested in Aotus monkeys

          • PfRH5-based vaccines afforded protection against heterologous strains of P. falciparum

          • Protection correlated with anti-PfRH5 IgG concentration and in vivo neutralization

          Abstract

          Antigenic diversity has hindered development of vaccines against the pathogenic blood-stage of Plasmodium falciparum. Douglas et al. demonstrate that human-compatible PfRH5-based vaccines can protect Aotus monkeys against vaccine-heterologous P. falciparum challenge. Protection correlated with anti-PfRH5 antibody concentration and parasite-neutralizing activity. PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants.

          The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial. We administered RTS,S/AS01 or a comparator vaccine to 6537 infants who were 6 to 12 weeks of age at the time of the first vaccination in conjunction with Expanded Program on Immunization (EPI) vaccines in a three-dose monthly schedule. Vaccine efficacy against the first or only episode of clinical malaria during the 12 months after vaccination, a coprimary end point, was analyzed with the use of Cox regression. Vaccine efficacy against all malaria episodes, vaccine efficacy against severe malaria, safety, and immunogenicity were also assessed. The incidence of the first or only episode of clinical malaria in the intention-to-treat population during the 14 months after the first dose of vaccine was 0.31 per person-year in the RTS,S/AS01 group and 0.40 per person-year in the control group, for a vaccine efficacy of 30.1% (95% confidence interval [CI], 23.6 to 36.1). Vaccine efficacy in the per-protocol population was 31.3% (97.5% CI, 23.6 to 38.3). Vaccine efficacy against severe malaria was 26.0% (95% CI, -7.4 to 48.6) in the intention-to-treat population and 36.6% (95% CI, 4.6 to 57.7) in the per-protocol population. Serious adverse events occurred with a similar frequency in the two study groups. One month after administration of the third dose of RTS,S/AS01, 99.7% of children were positive for anti-circumsporozoite antibodies, with a geometric mean titer of 209 EU per milliliter (95% CI, 197 to 222). The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

            Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A field trial to assess a blood-stage malaria vaccine.

              Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02(A), a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P=0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P=0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00460525.).
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell Host Microbe
                Cell Host Microbe
                Cell Host & Microbe
                Cell Press
                1931-3128
                1934-6069
                14 January 2015
                14 January 2015
                : 17
                : 1
                : 130-139
                Affiliations
                [1 ]Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
                [2 ]US Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
                [3 ]Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK
                [4 ]Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
                [5 ]Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, MD 20852, USA
                Author notes
                []Corresponding author sandy.douglas@ 123456ndm.ox.ac.uk
                Article
                S1931-3128(14)00455-7
                10.1016/j.chom.2014.11.017
                4297294
                25590760
                ad9ded8b-5177-41f4-aee9-128cebbb3a46
                © 2015 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

                History
                : 17 May 2014
                : 11 September 2014
                : 13 November 2014
                Categories
                Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article