23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.

      Science (New York, N.Y.)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.

          Related collections

          Author and article information

          Journal
          24526312
          10.1126/science.1246913

          Comments

          Comment on this article

          scite_