12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biologically active human islet amyloid polypeptide/amylin in transgenic mice.

      European Journal of Endocrinology
      Amyloid, genetics, physiology, Animals, Biological Assay, Blotting, Northern, Chromatography, High Pressure Liquid, Female, Humans, Islet Amyloid Polypeptide, Mice, Mice, Transgenic, Pancreas, chemistry, Plasma, RNA, Messenger, analysis, Radioimmunoassay, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human islet amyloid polypeptide (hIAPP), also named amylin, is a pancreatic beta cell protein implicated in the pathogenesis of pancreatic islet amyloid formation and type 2 diabetes mellitus. To study the (patho)physiological roles of hIAPP, we have generated transgenic mice that overexpress hIAPP mRNA, in relation to endogenous mouse IAPP (mIAPP) mRNA, in pancreatic beta cells. The biological activity of human and mouse IAPP derived from pancreatic extracts was determined. Pancreatic and plasma extracts of transgenic and control mice were analyzed by reversed-phase high-performance liquid chromatography (HPLC) and radioimmunoassay, yielding a separation of hIAPP from mIAPP. Biological activity of immunoreactive human and mouse IAPP components derived from pancreatic extracts was assessed by calcitonin receptor-mediated stimulation of cyclic AMP accumulation in T47D human breast carcinoma cells. The predominant immunoreactive human and mouse IAPP gene products had the retention times on HPLC analysis of the corresponding synthetic peptides. The ratio of bioactive over immunoreactive hIAPP and mIAPP was 0.93 +/- 0.18 and 1.19 +/- 0.56 respectively. In extracts of two plasma pools from 4 transgenic animals, hIAPP was 4.6- to 7-fold more abundant than mIAPP. This study has shown that correctly processed hIAPP produced in transgenic mouse pancreatic beta cells exhibits full biological activity. The results validate these transgenic mice for the study of (patho)physiological roles of hIAPP in vivo.

          Related collections

          Author and article information

          Comments

          Comment on this article