14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors

      , , , ,
      Atmospheric Chemistry and Physics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. East African countries face an increasing threat from poor air quality stemming from rapid urbanization, population growth, and a steep rise in fuel use and motorization rates. With few air quality monitoring systems available, this study provides much needed high temporal resolution data to investigate the concentrations of particulate matter (PM) air pollution in Kenya. Calibrated low-cost optical particle counters (OPCs) were deployed in Kenya in three locations: two in the capital Nairobi and one in a rural location in the outskirts of Nanyuki, which is upwind of Nairobi. The two Nairobi sites consist of an urban background site and a roadside site. The instruments were composed of an AlphaSense OPC-N2 ran with a Raspberry Pi low-cost microcomputer, packaged in a weather-proof box. Measurements were conducted over a 2-month period (February–March 2017) with an intensive study period when all measurements were active at all sites lasting 2 weeks. When collocated, the three OPC-N2 instruments demonstrated good inter-instrument precision with a coefficient of variance of 8.8±2.0 % in the fine particle fraction (PM2.5). The low-cost sensors had an absolute PM mass concentration calibration using a collocated gravimetric measurement at the urban background site in Nairobi.The mean daily PM1 mass concentration measured at the urban roadside, urban background and rural background sites were 23.9, 16.1 and 8.8 µg m−3, respectively. The mean daily PM2.5 mass concentration measured at the urban roadside, urban background and rural background sites were 36.6, 24.8 and 13.0 µg m−3, respectively. The mean daily PM10 mass concentration measured at the urban roadside, urban background and rural background sites were 93.7, 53.0 and 19.5 µg m−3, respectively. The urban measurements in Nairobi showed that PM concentrations regularly exceed WHO guidelines in both the PM10 and PM2.5 size ranges. Following a Lenschow-type approach we can estimate the urban and roadside increments that are applicable to Nairobi (Lenschow et al., 2001). The median urban increment is 33.1 µg m−3 and the median roadside increment is 43.3 µg m−3 for PM2.5. For PM1, the median urban increment is 4.7 µg m−3 and the median roadside increment is 12.6 µg m−3. These increments highlight the importance of both the urban and roadside increments to urban air pollution in Nairobi.A clear diurnal behaviour in PM mass concentration was observed at both urban sites, which peaks during the morning and evening Nairobi rush hours; this was consistent with the high roadside increment indicating that vehicular traffic is a dominant source of PM in the city, accounting for approximately 48.1 %, 47.5 % and 57.2 % of the total PM loading in the PM10, PM2.5 and PM1 size ranges, respectively. Collocated meteorological measurements at the urban sites were collected, allowing for an understanding of the location of major sources of particulate matter at the two sites. The potential problems of using low-cost sensors for PM measurement without gravimetric calibration available at all sites are discussed.This study shows that calibrated low-cost sensors can be successfully used to measure air pollution in cities like Nairobi. It demonstrates that low-cost sensors could be used to create an affordable and reliable network to monitor air quality in cities.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          openair — An R package for air quality data analysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Socioeconomic Disparities and Air Pollution Exposure: a Global Review.

            The existing reviews and meta-analyses addressing unequal exposure of environmental hazards on certain populations have focused on several environmental pollutants or on the siting of hazardous facilities. This review updates and contributes to the environmental inequality literature by focusing on ambient criteria air pollutants (including NOx), by evaluating studies related to inequality by socioeconomic status (as opposed to race/ethnicity) and by providing a more global perspective. Overall, most North American studies have shown that areas where low-socioeconomic-status (SES) communities dwell experience higher concentrations of criteria air pollutants, while European research has been mixed. Research from Asia, Africa, and other parts of the world has shown a general trend similar to that of North America, but research in these parts of the world is limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution.

              Ambient air pollution is associated with numerous adverse health impacts. Previous assessments of global attributable disease burden have been limited to urban areas or by coarse spatial resolution of concentration estimates. Recent developments in remote sensing, global chemical-transport models, and improvements in coverage of surface measurements facilitate virtually complete spatially resolved global air pollutant concentration estimates. We combined these data to generate global estimates of long-term average ambient concentrations of fine particles (PM(2.5)) and ozone at 0.1° × 0.1° spatial resolution for 1990 and 2005. In 2005, 89% of the world's population lived in areas where the World Health Organization Air Quality Guideline of 10 μg/m(3) PM(2.5) (annual average) was exceeded. Globally, 32% of the population lived in areas exceeding the WHO Level 1 Interim Target of 35 μg/m(3), driven by high proportions in East (76%) and South (26%) Asia. The highest seasonal ozone levels were found in North and Latin America, Europe, South and East Asia, and parts of Africa. Between 1990 and 2005 a 6% increase in global population-weighted PM(2.5) and a 1% decrease in global population-weighted ozone concentrations was apparent, highlighted by increased concentrations in East, South, and Southeast Asia and decreases in North America and Europe. Combined with spatially resolved population distributions, these estimates expand the evaluation of the global health burden associated with outdoor air pollution.
                Bookmark

                Author and article information

                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2018
                October 26 2018
                : 18
                : 20
                : 15403-15418
                Article
                10.5194/acp-18-15403-2018
                adb8c503-8152-4229-aac5-a00385db33d7
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article