8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AP2/ERF Family Transcription Factors ORA59 and RAP2.3 Interact in the Nucleus and Function Together in Ethylene Responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gaseous plant hormone ethylene is a key signaling molecule regulating plant growth, development, and defense against pathogens. Octadecanoid-responsive arabidopsis 59 (ORA59) is an ethylene response factor (ERF) transcription factor and has been suggested to integrate ethylene and jasmonic acid signaling and regulate resistance to necrotrophic pathogens. Here we screened for ORA59 interactors using the yeast two-hybrid system to elucidate the molecular function of ORA59. This led to the identification of RELATED TO AP2.3 (RAP2.3), another ERF transcription factor belonging to the group VII ERF family. In binding assays, ORA59 and RAP2.3 interacted in the nucleus and showed ethylene-dependent nuclear localization. ORA59 played a positive role in ethylene-regulated responses, including the triple response, featured by short, thick hypocotyl and root, and exaggerated apical hook in dark-grown seedlings, and resistance to the necrotrophic pathogen Pectobacterium carotovorum, as shown by the increased and decreased ethylene sensitivity and disease resistance in ORA59-overexpressing ( ORA59OE) and null mutant ( ora59) plants, respectively. In genetic crosses, ORA59OE rap2.3 crossed lines lost ORA59-mediated positive effects and behaved like rap2.3 mutant. These results suggest that ORA59 physically interacts with RAP2.3 and that this interaction is important for the regulatory roles of ORA59 in ethylene responses.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis of the ERF gene family in Arabidopsis and rice.

          Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cross talk between signaling pathways in pathogen defense.

            Plant defense in response to microbial attack is regulated through a complex network of signaling pathways that involve three signaling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene. The SA and JA signaling pathways are mutually antagonistic. This regulatory cross talk may have evolved to allow plants to fine-tune the induction of their defenses in response to different plant pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases.

              We isolated a recessive Arabidopsis mutant, ctr1, that constitutively exhibits seedling and adult phenotypes observed in plants treated with the plant hormone ethylene. The ctr1 adult morphology can be phenocopied by treatment of wild-type plants with exogenous ethylene and is due, at least in part, to inhibition of cell elongation. Seedlings and adult ctr1 plants show constitutive expression of ethylene-regulated genes. The epistasis of ctr1 and other ethylene response mutants has defined the position of CTR1 in the ethylene signal transduction pathway. The CTR1 gene has been cloned, and the DNA sequences of four mutant alleles were determined. The gene encodes a putative serine/threonine protein kinase that is most closely related to the Raf protein kinase family.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                19 November 2018
                2018
                : 9
                : 1675
                Affiliations
                Department of Life Sciences, Korea University , Seoul, South Korea
                Author notes

                Edited by: Jens Staal, Ghent University, Belgium

                Reviewed by: Silvia Proietti, Università degli Studi della Tuscia, Italy; Jorge Vicente, University of Nottingham, United Kingdom

                *Correspondence: Ohkmae K. Park, omkim@ 123456korea.ac.kr

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.01675
                6254012
                30510560
                adc1cc13-3e22-4854-af2c-eb76aac422f8
                Copyright © 2018 Kim, Jang and Park.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 September 2018
                : 26 October 2018
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 70, Pages: 12, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                arabidopsis thaliana,ora59,rap2.3,ethylene response factor,ethylene,pectobacterium carotovorum,disease resistance,plant immunity

                Comments

                Comment on this article