2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of a Mouse Model to Study the Noonan Syndrome Gene Lztr1 in the Telencephalon

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The leucine zipper-like transcriptional regulator 1 ( Lztr1) is a BTB-Kelch domain protein involved in RAS/MAPK pathway regulation. Mutations in LZTR1 are associated with cancers and Noonan syndrome, the most common RASopathy. The expression and function of Lztr1 in the developing brain remains poorly understood. Here we show that Lztr1 is expressed in distinct regions of the telencephalon, the most anterior region of the forebrain. Lztr1 expression was robust in the cortex, amygdala, hippocampus, and oligodendrocytes in the white matter. To gain insight into the impact of Lztr1 deficiency, we generated a conditional knockout (cKO) restricted to the telencephalon using Foxg1 IREScre/+ . Lztr1 cKOs are viable to postnatal stages and show reduced Lztr1 expression in the telencephalon. Interestingly, Lztr1 cKOs exhibit an increase in MAPK pathway activation in white matter regions and subsequently show an altered expression of stage-specific markers in the oligodendrocyte lineage with increased oligodendrocyte progenitor cells (OPCs) and decreased markers of oligodendrocyte differentiation. Moreover, Lztr1 cKOs also exhibit an increased expression of the astrocyte marker GFAP. These results highlight the generation of a new mouse model to study Lztr1 deficiency in the brain and reveal a novel role for Lztr1 in normal oligodendrocyte and astrocyte development in the telencephalon.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex.

          The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain. Copyright © 2014 the authors 0270-6474/14/3411929-19$15.00/0.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

            Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A conditional knockout resource for the genome-wide study of mouse gene function.

              Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                16 June 2021
                2021
                : 9
                : 673995
                Affiliations
                [1] 1Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati , OH, United States
                [2] 2Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati , OH, United States
                [3] 3Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati , OH, United States
                [4] 4Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, OH, United States
                [5] 5Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center , Cincinnati, OH, United States
                Author notes

                Edited by: Desheng Liang, Central South University, China

                Reviewed by: Antonius Plagge, University of Liverpool, United Kingdom; Jia-Da Li, Central South University, China

                *Correspondence: Ronald R. Waclaw, ronald.waclaw@ 123456cchmc.org

                This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2021.673995
                8242193
                adc21811-d4a2-47a2-8f73-4fd0596ea480
                Copyright © 2021 Talley, Nardini, Shabbir, Ehrman, Prada and Waclaw.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 February 2021
                : 07 May 2021
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 55, Pages: 11, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Cell and Developmental Biology
                Brief Research Report

                lztr1,noonan syndrome,mapk,oligodendrocyte,astrocyte
                lztr1, noonan syndrome, mapk, oligodendrocyte, astrocyte

                Comments

                Comment on this article