51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation

      ,
      Tropical Conservation Science
      SAGE Publications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          Is oil palm agriculture really destroying tropical biodiversity?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cost-effectiveness of biodiversity surveys in tropical forests.

            The identification of high-performance indicator taxa that combine practical feasibility and ecological value requires an understanding of the costs and benefits of surveying different taxa. We present a generic and novel framework for identifying such taxa, and illustrate our approach using a large-scale assessment of 14 different higher taxa across three forest types in the Brazilian Amazon, estimating both the standardized survey cost and the ecological and biodiversity indicator value for each taxon. Survey costs varied by three orders of magnitude, and dung beetles and birds were identified as especially suitable for evaluating and monitoring the ecological consequences of habitat change in our study region. However, an exclusive focus on such taxa occurs at the expense of understanding patterns of diversity in other groups. To improve the cost-effectiveness of biodiversity research we encourage a combination of clearer research goals and the use of an objective evidence-based approach to selecting study taxa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Remotely sensed evidence of tropical peatland conversion to oil palm.

              Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ≈880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ≈140 million Mg of aboveground biomass carbon, and annual emissions of ≈4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ≈660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ≈20%, whereas oil-palm establishment would exacerbate species losses by up to ≈12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia.
                Bookmark

                Author and article information

                Journal
                Tropical Conservation Science
                Tropical Conservation Science
                SAGE Publications
                1940-0829
                1940-0829
                June 2012
                June 2012
                : 5
                : 2
                : 121-132
                Article
                10.1177/194008291200500202
                adc4eb7f-01cc-4c0a-827f-dad69e7feab9
                © 2012
                History

                Comments

                Comment on this article