11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Responses of soil microbial communities to water stress: results from a meta-analysis.

      1 , ,
      Ecology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil heterotrophic respiration and nutrient mineralization are strongly affected by environmental conditions, in particular by moisture fluctuations triggered by rainfall events. When soil moisture decreases, so does decomposers' activity, with microfauna generally undergoing stress sooner than bacteria and fungi. Despite differences in the responses of individual decomposer groups to moisture availability (e.g., bacteria are typically more sensitive than fungi to water stress), we show that responses of decomposers at the community level are different in soils and surface litter, but similar across biomes and climates. This results in a nearly constant soil-moisture threshold corresponding to the point when biological activity ceases, at a water potential of about -14 MPa in mineral soils and -36 MPa in surface litter. This threshold is shown to be comparable to the soil moisture value where solute diffusion becomes strongly inhibited in soil, while in litter it is dehydration rather than diffusion that likely limits biological activity around the stress point. Because of these intrinsic constraints and lack of adaptation to different hydro-climatic regimes, changes in rainfall patterns (primary drivers of the soil moisture balance) may have dramatic impacts on soil carbon and nutrient cycling.

          Related collections

          Author and article information

          Journal
          Ecology
          Ecology
          Wiley
          0012-9658
          0012-9658
          Apr 2012
          : 93
          : 4
          Affiliations
          [1 ] Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, North Carolina 27708, USA. stefano.manzoni@duke.edu
          Article
          10.1890/11-0026.1
          22690643
          adcaac85-3f0b-42de-a7e4-8e3cdef6016b
          History

          Comments

          Comment on this article