1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Benchmarking Taxonomic and Genetic Diversity After the Fact: Lessons Learned From the Catastrophic 2019–2020 Australian Bushfires

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental catastrophes are increasing in frequency and severity under climate change, and they substantially impact biodiversity. Recovery actions after catastrophes depend on prior benchmarking of biodiversity and that in turn minimally requires critical assessment of taxonomy and species-level diversity. Long-term recovery of species also requires an understanding of within-species diversity. Australia’s 2019–2020 bushfires were unprecedented in their extent and severity and impacted large portions of habitats that are not adapted to fire. Assessments of the fires’ impacts on vertebrates identified 114 species that were a high priority for management. In response, we compiled explicit information on taxonomic diversity and genetic diversity within fire-impacted vertebrates to provide to government agencies undertaking rapid conservation assessments. Here we discuss what we learned from our effort to benchmark pre-fire taxonomic and genetic diversity after the event. We identified a significant number of candidate species (genetic units that may be undescribed species), particularly in frogs and mammals. Reptiles and mammals also had high levels of intraspecific genetic structure relevant to conservation management. The first challenge was making published genetic data fit for purpose because original publications often focussed on a different question and did not provide raw sequence read data. Gaining access to analytical files and compiling appropriate individual metadata was also time-consuming. For many species, significant unpublished data was held by researchers. Identifying which data existed was challenging. For both published and unpublished data, substantial sampling gaps prevented areas of a species’ distribution being assigned to a conservation unit. Summarising sampling gaps across species revealed that many areas were poorly sampled across taxonomic groups. To resolve these issues and prepare responses to future catastrophes, we recommend that researchers embrace open data principles including providing detailed metadata. Governments need to invest in a skilled taxonomic workforce to document and describe biodiversity before an event and to assess its impacts afterward. Natural history collections should also target increasing their DNA collections based on sampling gaps and revise their collection strategies to increasingly take population-scale DNA samples in order to document within-species genetic diversity.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The FAIR Guiding Principles for scientific data management and stewardship

          There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetic legacy of the Quaternary ice ages.

            G. Hewitt (2000)
            Global climate has fluctuated greatly during the past three million years, leading to the recent major ice ages. An inescapable consequence for most living organisms is great changes in their distribution, which are expressed differently in boreal, temperate and tropical zones. Such range changes can be expected to have genetic consequences, and the advent of DNA technology provides most suitable markers to examine these. Several good data sets are now available, which provide tests of expectations, insights into species colonization and unexpected genetic subdivision and mixture of species. The genetic structure of human populations may be viewed in the same context. The present genetic structure of populations, species and communities has been mainly formed by Quaternary ice ages, and genetic, fossil and physical data combined can greatly help our understanding of how organisms were so affected.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A decade of weather extremes

                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                May 21 2021
                May 21 2021
                : 9
                Article
                10.3389/fevo.2021.645820
                ade0d9bd-5d28-4635-8188-c082b4b2c634
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/


                Comments

                Comment on this article