58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      fog-2 and the Evolution of Self-Fertile Hermaphroditism in Caenorhabditis

      research-article
      1 , 1 , 1 ,
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Somatic and germline sex determination pathways have diverged significantly in animals, making comparisons between taxa difficult. To overcome this difficulty, we compared the genes in the germline sex determination pathways of Caenorhabditis elegans and C. briggsae, two Caenorhabditis species with similar reproductive systems and sequenced genomes. We demonstrate that C. briggsae has orthologs of all known C. elegans sex determination genes with one exception: fog-2. Hermaphroditic nematodes are essentially females that produce sperm early in life, which they use for self fertilization. In C. elegans, this brief period of spermatogenesis requires FOG-2 and the RNA-binding protein GLD-1, which together repress translation of the tra-2 mRNA. FOG-2 is part of a large C. elegans FOG-2-related protein family defined by the presence of an F-box and Duf38/FOG-2 homogy domain. A fog-2-related gene family is also present in C. briggsae, however, the branch containing fog-2 appears to have arisen relatively recently in C. elegans, post-speciation. The C-terminus of FOG-2 is rapidly evolving, is required for GLD-1 interaction, and is likely critical for the role of FOG-2 in sex determination. In addition, C. briggsae gld-1 appears to play the opposite role in sex determination (promoting the female fate) while maintaining conserved roles in meiotic progression during oogenesis. Our data indicate that the regulation of the hermaphrodite germline sex determination pathway at the level of FOG-2/GLD-1/ tra-2 mRNA is fundamentally different between C. elegans and C. briggsae, providing functional evidence in support of the independent evolution of self-fertile hermaphroditism. We speculate on the convergent evolution of hermaphroditism in Caenorhabditis based on the plasticity of the C. elegans germline sex determination cascade, in which multiple mutant paths yield self fertility.

          Abstract

          A comparison of sex determination genes in C. elegans and C. briggsae provides evidence in support of the convergent evolution of self-fertile hermaphroditism in the Caenorhabditis clade

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequence of the nematode C. elegans: a platform for investigating biology.

            (1999)
            The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Ka/Ks ratio: diagnosing the form of sequence evolution

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                January 2005
                28 December 2004
                : 3
                : 1
                : e6
                Affiliations
                [1] 1Department of Genetics, Washington University School of Medicine St. Louis, MissouriUnited States of America
                University of California at Berkeley United States of America
                Article
                10.1371/journal.pbio.0030006
                539060
                15630478
                ade3f38a-fad0-4d13-989c-e44871ce9221
                Copyright: © 2004 Nayak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
                History
                : 23 July 2004
                : 16 October 2004
                Categories
                Research Article
                Development
                Evolution
                Genetics/Genomics/Gene Therapy
                Caenorhabditis

                Life sciences
                Life sciences

                Comments

                Comment on this article