573
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual Electrophysiological Recordings of Synaptically-evoked Astroglial and Neuronal Responses in Acute Hippocampal Slices

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Astrocytes form together with neurons tripartite synapses, where they integrate and modulate neuronal activity. Indeed, astrocytes sense neuronal inputs through activation of their ion channels and neurotransmitter receptors, and process information in part through activity-dependent release of gliotransmitters. Furthermore, astrocytes constitute the main uptake system for glutamate, contribute to potassium spatial buffering, as well as to GABA clearance. These cells therefore constantly monitor synaptic activity, and are thereby sensitive indicators for alterations in synaptically-released glutamate, GABA and extracellular potassium levels. Additionally, alterations in astroglial uptake activity or buffering capacity can have severe effects on neuronal functions, and might be overlooked when characterizing physiopathological situations or knockout mice. Dual recording of neuronal and astroglial activities is therefore an important method to study alterations in synaptic strength associated to concomitant changes in astroglial uptake and buffering capacities. Here we describe how to prepare hippocampal slices, how to identify stratum radiatum astrocytes, and how to record simultaneously neuronal and astroglial electrophysiological responses. Furthermore, we describe how to isolate pharmacologically the synaptically-evoked astroglial currents.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Glutamate uptake.

          Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of glutamate clearance and synaptic efficacy by glial coverage of neurons.

            Analysis of excitatory synaptic transmission in the rat hypothalamic supraoptic nucleus revealed that glutamate clearance and, as a consequence, glutamate concentration and diffusion in the extracellular space, is associated with the degree of astrocytic coverage of its neurons. Reduction in glutamate clearance, whether induced pharmacologically or associated with a relative decrease of glial coverage in the vicinity of synapses, affected transmitter release through modulation of presynaptic metabotropic glutamate receptors. Astrocytic wrapping of neurons, therefore, contributes to the regulation of synaptic efficacy in the central nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic activation of glutamate transporters in hippocampal astrocytes.

              Glutamate transporters in the CNS are expressed in neurons and glia and mediate high affinity, electrogenic uptake of extracellular glutamate. Although glia have the highest capacity for glutamate uptake, the amount of glutamate that reaches glial membranes following release and the rate that glial transporters bind and sequester transmitter is not known. We find that stimulation of Schaffer collateral/commissural fibers in hippocampal slices evokes glutamate transporter currents in CA1 astrocytes that activate rapidly, indicating that a significant amount of transmitter escapes the synaptic cleft shortly after release. Transporter currents in outside-out patches from astrocytes have faster kinetics than synaptically elicited currents, suggesting that the glutamate concentration attained at astrocytic membranes is lower but remains elevated for longer than in the synaptic cleft.
                Bookmark

                Author and article information

                Journal
                J Vis Exp
                J Vis Exp
                JoVE
                Journal of Visualized Experiments : JoVE
                MyJove Corporation
                1940-087X
                2012
                26 November 2012
                26 November 2012
                : 69
                : 4418
                Affiliations
                Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France
                Paris Diderot University
                Author notes

                Correspondence to: Ulrike Pannasch at ulrike.pannasch@ 123456charite.de , Nathalie Rouach at nathalie.rouach@ 123456college-de-france.fr

                Article
                4418
                10.3791/4418
                3564483
                23222635
                ade8c8fd-5dcb-4d2a-83bb-119475cfd48d
                Copyright © 2012, Journal of Visualized Experiments

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits non-commercial use, distribution, and reproduction, provided the original work is properly cited.

                History
                Categories
                Neuroscience

                Uncategorized
                neuroscience,hippocampus preparation,paired recordings,physiology,anatomy,patch-clamp,astroglial,neuroglial interactions,neurons,astrocytes,synaptically-evoked responses,acute brain slice,potassium current,electrophysiology,issue 69,glutamate transporter current,synaptic activity,medicine

                Comments

                Comment on this article