13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a novel TIF-IA–NF-κB nucleolar stress response pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          p53 as an effector of nucleolar stress is well defined, but p53 independent mechanisms are largely unknown. Like p53, the NF-κB transcription factor plays a critical role in maintaining cellular homeostasis under stress. Many stresses that stimulate NF-κB also disrupt nucleoli. However, the link between nucleolar function and activation of the NF-κB pathway is as yet unknown. Here we demonstrate that artificial disruption of the PolI complex stimulates NF-κB signalling. Unlike p53 nucleolar stress response, this effect does not appear to be linked to inhibition of rDNA transcription. We show that specific stress stimuli of NF-κB induce degradation of a critical component of the PolI complex, TIF-IA. This degradation precedes activation of NF-κB and is associated with increased nucleolar size. It is mimicked by CDK4 inhibition and is dependent upon a novel pathway involving UBF/p14ARF and S44 of the protein. We show that blocking TIF-IA degradation blocks stress effects on nucleolar size and NF-κB signalling. Finally, using ex vivo culture, we show a strong correlation between degradation of TIF-IA and activation of NF-κB in freshly resected, human colorectal tumours exposed to the chemopreventative agent, aspirin. Together, our study provides compelling evidence for a new, TIF-IA–NF-κB nucleolar stress response pathway that has in vivo relevance and therapeutic implications.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Requirement for p53 and p21 to sustain G2 arrest after DNA damage.

          After DNA damage, many cells appear to enter a sustained arrest in the G2 phase of the cell cycle. It is shown here that this arrest could be sustained only when p53 was present in the cell and capable of transcriptionally activating the cyclin-dependent kinase inhibitor p21. After disruption of either the p53 or the p21 gene, gamma radiated cells progressed into mitosis and exhibited a G2 DNA content only because of a failure of cytokinesis. Thus, p53 and p21 appear to be essential for maintaining the G2 checkpoint in human cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Nucleolus under Stress

            Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses.

              p53 protects against cancer through its capacity to induce cell cycle arrest or apoptosis under a large variety of cellular stresses. It is not known how such diversity of signals can be integrated by a single molecule. However, the literature reveals that a common denominator in all p53-inducing stresses is nucleolar disruption. We thus postulated that the impairment of nucleolar function might stabilize p53 by preventing its degradation. Using micropore irradiation, we demonstrate that large amounts of nuclear DNA damage fail to stabilize p53 unless the nucleolus is also disrupted. Forcing nucleolar disruption by anti-upstream binding factor (UBF) microinjection (in the absence of DNA damage) also causes p53 stabilization. We propose that the nucleolus is a stress sensor responsible for maintenance of low levels of p53, which are automatically elevated as soon as nucleolar function is impaired in response to stress. Our model integrates all known p53-inducing agents and also explains cell cycle-related variations in p53 levels which correlate with established phases of nucleolar assembly/disassembly through the cell cycle.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                06 July 2018
                05 June 2018
                05 June 2018
                : 46
                : 12
                : 6188-6205
                Affiliations
                [1 ]University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Rd., Edinburgh EH4 2XU, UK
                [2 ]Liver Research Group, Institute of Cellular Medicine, 4th Floor, William Leech Building, Framlington Place, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
                Author notes
                To whom correspondence should be addressed. Tel: +44 131 651 8531; Email: Lesley.Stark@ 123456IGMM.ed.ac.uk
                Article
                gky455
                10.1093/nar/gky455
                6158704
                29873780
                adf201d4-a515-46a6-8d89-a73643de6cd3
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 May 2018
                : 13 April 2018
                Page count
                Pages: 18
                Funding
                Funded by: WWCR
                Award ID: 10-0158
                Funded by: Rosetrees Trust 10.13039/501100000833
                Award ID: A631, JS16/M225
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/H530362/1
                Funded by: Medical Research Council Canada 10.13039/501100007155
                Award ID: MR/J001481/1
                Categories
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article