4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complicated ventricular arrhythmia and hematologic myeloproliferative disorder in RIT1‐associated Noonan syndrome: Expanding the phenotype and review of the literature

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Noonan syndrome is an autosomal dominant disorder secondary to RASopathies, which are caused by germ‐line mutations in genes encoding components of the RAS mitogen‐activated protein kinase pathway. RIT1 (OMIM *609591) was recently reported as a disease gene for Noonan syndrome.

          Methods and Results

          We present a patient with RIT1‐associated Noonan syndrome, who in addition to the congenital heart defect, had monocytosis, myeloproliferative disorder, and accelerated idioventricular rhythm that was associated with severe hemodynamic instability. Noonan syndrome was suspected given the severe pulmonary stenosis, persistent monocytosis, and “left‐shifted” complete blood counts without any evidence of an infectious process. Genetic testing revealed that the patient had a heterozygous c.221 C>G (pAla74Gly) mutation in the RIT1.

          Conclusion

          We report a case of neonatal Noonan syndrome associated with RIT1 mutation. The clinical suspicion for Noonan syndrome was based only on the congenital heart defect, persistent monocytosis, and myeloproliferative process as the child lacked all other hallmarks characteristics of Noonan syndrome. However, the patient had an unusually malignant ventricular dysrhythmia that lead to his demise. The case highlights the fact that despite its heterogeneous presentation, RIT1‐associated Noonan syndrome can be extremely severe with poor outcome.

          Abstract

          RIT1 is one of the most recent genes identified in association with Noonan Syndrome. In this report, we present a patient with RIT1‐associated Noonan syndrome, who had pulmonary valve stenosis, monocytosis, myeloproliferative disorder, and hemodynamically significant ventricular dysrhythmias. Genetic testing revealed that the patient had a heterozygous c.221 C>G (pAla57Gly) mutation in the RIT1 gene.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.

          Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.

            We report here that individuals with Noonan syndrome and juvenile myelomonocytic leukemia (JMML) have germline mutations in PTPN11 and that somatic mutations in PTPN11 account for 34% of non-syndromic JMML. Furthermore, we found mutations in PTPN11 in a small percentage of individuals with myelodysplastic syndrome (MDS) and de novo acute myeloid leukemia (AML). Functional analyses documented that the two most common mutations in PTPN11 associated with JMML caused a gain of function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Germline gain-of-function mutations in SOS1 cause Noonan syndrome.

              Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.
                Bookmark

                Author and article information

                Contributors
                safwat.aly@sickkids.ca
                Journal
                Mol Genet Genomic Med
                Mol Genet Genomic Med
                10.1002/(ISSN)2324-9269
                MGG3
                Molecular Genetics & Genomic Medicine
                John Wiley and Sons Inc. (Hoboken )
                2324-9269
                12 May 2020
                July 2020
                : 8
                : 7 ( doiID: 10.1002/mgg3.v8.7 )
                : e1253
                Affiliations
                [ 1 ] Department of Pediatrics Rush University Medical College Chicago IL USA
                [ 2 ] Division of Cardiology Department of Pediatrics The Hospital for Sick Children University of Toronto Toronto Ontario Canada
                Author notes
                [*] [* ] Correspondence

                Safwat A. Aly, Labatt Family Heart Center, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.

                Email: safwat.aly@ 123456sickkids.ca

                Author information
                https://orcid.org/0000-0002-1823-453X
                Article
                MGG31253
                10.1002/mgg3.1253
                7336743
                32396283
                ae20716b-eb83-4cc8-993a-a4f823956d92
                © 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 November 2019
                : 20 March 2020
                Page count
                Figures: 2, Tables: 1, Pages: 6, Words: 3411
                Categories
                Clinical Report
                Clinical Reports
                Custom metadata
                2.0
                July 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.5 mode:remove_FC converted:06.07.2020

                accelerated idioventricular rhythm,monocytosis,myeloproliferative disorder,noonan syndrome

                Comments

                Comment on this article