37
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective:

          Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs.

          Methods:

          Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery.

          Result:

          FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed.

          Conclusion:

          FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs.

          Several growth factors (or cytokines) have been recently investigated for their use as potential therapeutics for periodontal tissue regeneration. The objective of this study was to evaluate periodontal tissue regeneration, including new bone and cementum formation, following topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2) to furcation class II defects. Twelve furcation class II bone defects were surgically created in six beagle dogs, then recombinant bFGF (30 micro g/site) + gelatinous carrier was topically applied to the bony defects. Six weeks after application, periodontal regeneration was analyzed. In all sites where bFGF was applied, periodontal ligament formation with new cementum deposits and new bone formation was observed histomorphometrically, in amounts greater than in the control sites. Basic FGF-applied sites exhibited significant regeneration as represented by the new bone formation rate (NBR) (83.6 +/- 14.3%), new trabecular bone formation rate (NTBR) (44.1 +/- 9.5%), and new cementum formation rate (NCR) (97.0 +/- 7.5%). In contrast, in the carrier-only sites, the NBR, NTBR, and NCR were 35.4 +/- 8.9%, 16.6 +/- 6.2%, and 37.2 +/- 15.1%, respectively. Moreover, no instances of epithelial down growth, ankylosis, or root resorption were observed in the bFGF-applied sites examined. The present results indicate that topical application of bFGF can enhance considerable periodontal regeneration in artificially created furcation class II bone defects of beagle dogs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation.

            Management of periodontal defects has always been a challenge in clinical periodontics. Recently mesenchymal stem cells (MSC) have been proposed for tissue regeneration in periodontal disease and repair of large bone defects. Bone regeneration has to be supported by a scaffold which has to be biocompatible, biodegradable, and able to support cell growth and differentiation. The aim of this study was to evaluate osteogenic differentiation of MSC seeded on a collagen scaffold. MSC were obtained from adult rat bone marrow, expanded and cultured in plastic dishes or seeded in a collagen scaffold (Gingistat). MSC were induced towards osteogenic differentiation using osteogenic supplements. Cell differentiation and calcium deposits were evaluated by immunoblotting, immunohistochemistry, histochemical techniques, enzymatic activity assay, and SEM-EDX analysis. Biomaterial in vitro degradation was evaluated by measuring mass reduction after incubation in culture medium. Rat MSC osteogenic differentiation was demonstrated by osteopontin and osteocalcin expression and an increase in alkaline phosphatase activity. MSC were distributed homogeneously in the collagen scaffold. Nodular aggregates and alizarin red stained calcium deposits were observed in MSC induced towards osteogenic differentiation cultured in dishes or seeded in the collagen scaffold. SEM-EDX analysis demonstrated that calcium co-localized with phosphorous. The biomaterial in vitro degraded in 4-5 weeks. MSC from bone marrow differentiate towards osteogenic lineage, representing a suitable cell source for bone formation in periodontal regeneration. Gingistat collagen scaffold supports MSC distribution and differentiation, but its short degradation time may be a limitation for a future application in bone tissue regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation.

              Interstitial fibroblasts play a critical role in renal fibrogenesis, and autocrine proliferation of these cells may account for continuous matrix synthesis. Basic fibroblast growth factor (FGF-2) is mitogenic for most cells and exerts intracrine, autocrine, and paracrine effects on epithelial and mesenchymal cells. The aims of the present studies were to localize and quantitate the expression of FGF-2 in normal and pathologic human kidneys and to study the in vitro effects of FGF-2 on proliferation, differentiation, and matrix production of isolated cortical kidney fibroblasts. FGF-2 protein expression was localized by immunofluoresence double labelings in normal and fibrotic human kidneys. Subsequently, interstitial FGF-2 labeling was determined semiquantitatively in 8 normal kidneys and 39 kidneys with variable degrees of interstitial fibrosis and was correlated with the morphometrically determined interstitial cortical volume. In addition, FGF-2 expression was quantitated by immunoblot analysis in three normal and six fibrotic kidneys. FGF-2 mRNA was localized by in situ hybridizations. Seven primary cortical fibroblast lines were established, and expression of FGF-2 and FGF receptor-1 (FGFR-1) were examined. The effects of FGF-2 on cell proliferation were determined by bromodeoxyuridine incorporation and cell counts, those on differentiation into myofibroblasts by staining for alpha-smooth muscle actin, and those on matrix synthesis by enzyme-linked immunosorbent assay for collagen type I and fibronectin. Finally, proliferative activity in vivo was evaluated by expression of MIB-1 (Ki-67 antigen). In normal kidneys, FGF-2 expression was confined to glomerular, vascular, and a few tubular as well as interstitial fibroblast-like cells. The expression of FGF-2 protein was increased in human kidneys, with tubulointerstitial scarring correlating with the degree of interstitial fibrosis (r = 0.84, P < 0.01). Immunoblot analyses confirmed a significant increase in FGF-2 protein expression in kidneys with interstitial scarring. In situ hybridization studies demonstrated low-level detection of FGF-2 mRNA in normal kidneys. However, FGF-2 mRNA expression was robustly up-regulated in interstitial and tubular cells in end-stage kidneys, indicating that these cells are the source of excess FGF-2 protein. Primary cortical fibroblasts express FGF-2 and FGFR-1 in vitro. FGF-2 induced a robust growth response in these cells that could be blocked specifically by a neutralizing FGF-2 antibody. Interestingly, the addition of the neutralizing antibody alone did reduce basal proliferation up to 31.5%. In addition, FGF-2 induced expression of alpha-smooth muscle actin up to 1.6-fold, but no significant effect was observed on the synthesis of collagen type I and fibronectin. Finally, staining for MIB-1 revealed a good correlation of interstitial FGF-2 positivity with interstitial and tubular proliferative activity (r = 0.71, P < 0.01 for interstitial proliferation, N = 30). Interstitial FGF-2 protein and mRNA expression correlate with interstitial scarring. FGF-2 is a strong mitogen for cortical kidney fibroblasts and may promote autocrine fibroblast growth. Expression of FGF-2 correlates with interstitial and tubular proliferation in vivo.
                Bookmark

                Author and article information

                Journal
                Open Dent J
                Open Dent J
                TODENTJ
                The Open Dentistry Journal
                Bentham Open
                1874-2106
                29 July 2016
                2016
                : 10
                : 347-359
                Affiliations
                Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
                Author notes
                [* ] Address correspondence to this author at the Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan; Tel: +81-11-706-4266; Fax: +81-11-706-4334; E-mail: miyaji@ 123456den.hokudai.ac.jp
                Article
                TODENTJ-10-347
                10.2174/1874210601610010347
                4974830
                27583044
                ae2fea52-f620-4084-aaa8-cf95103cb95c
                © Momose et al.; Licensee Bentham Open

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 26 November 2015
                : 13 June 2016
                : 21 June 2016
                Categories
                Article

                Dentistry
                alveolar bone regeneration,biomaterial,periodontal attachment,periodontal tissue engineering

                Comments

                Comment on this article