61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current study aimed to examine the short-term choroidal response to optical defocus in schoolchildren. Myopic schoolchildren aged 8–16 were randomly allocated to control group (CG), myopic defocus group (MDG) and hyperopic defocus group (HDG) (n = 17 per group). Children in MDG and HDG received additional +3D and -3D lenses, respectively, to their full corrections on the right eyes. Full correction was given to their left eyes, and on both eyes in the CG. Axial length (AXL) and subfoveal choroidal thickness (SFChT) were then measured by spectral domain optical coherence tomography. Children wore their group-specific correction for 2 hours after which any existing optical defocus was removed, and subjects wore full corrections for another 2 hours. Both the AXL and SFChT were recorded hourly for 4 hours. The mean refraction of all subjects was -3.41 ± 0.37D (± SEM). SFChT thinned when exposed to hyperopic defocus for 2 hours but less thinning was observed in response to myopic defocus compared to the control group (p < 0.05, two-way ANOVA). Removal of optical defocus significantly decreased SFChT in the MDG and significantly increased SFChT in the HDG after 1 and 2 hours (mean percentage change at 2-hour; control vs. hyperopic defocus vs. myopic defocus; -0.33 ± 0.59% vs. 3.04 ± 0.60% vs. -1.34 ± 0.74%, p < 0.01). Our results showed short-term exposure to myopic defocus induced relative choroidal thickening while hyperopic defocus led to choroidal thinning in children. This rapid and reversible choroidal response may be an important clinical parameter in gauging retinal response to optical defocus in human myopia.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography.

          To describe the pattern and magnitude of diurnal variation of choroidal thickness (CT), its relation to systemic and ocular factors, and to determine the intervisit reproducibility of diurnal patterns. A prospective study was conducted on 12 healthy volunteers who each underwent sequential ocular imaging on two separate days at five fixed, 2-hour time intervals. Spectral domain optical coherence tomography (OCT) with enhanced depth imaging and image tracking was performed using a standardized protocol. Choroidal and retinal thicknesses were independently assessed by two masked graders. CT diurnal variation was assessed using repeated-measures ANOVA. A significant diurnal variation in CT was observed, with mean maximum CT of 372.2 μm, minimum of 340.6 μm (P < 0.001), and mean diurnal amplitude of 33.7 μm. Retinal thickness (mean, 235.0 μm) did not exhibit significant diurnal variation (P = 0.621). The amplitude of CT variation was significantly greater for subjects with thicker morning baseline CT compared with those with thin choroids (43.1 vs. 10.5 μm, P < 0.001). There were significant correlations between amplitude of CT and age (P = 0.032), axial length (P < 0.001), and spherical equivalent (P < 0.001). The change in CT also correlated with change in systolic blood pressure (P = 0.031). Comparing CT on two different days, a similar diurnal pattern was observed, with no significant difference between corresponding measurements at the same time points (P = 0.180). There is significant diurnal variation of CT, with good intervisit reproducibility of diurnal patterns on two different days. The amplitude of variation varies with morning baseline CT, and is correlated with age, axial length, refractive error, and change in systolic blood pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial.

            This single-masked randomized clinical trial aimed to evaluate the effectiveness of orthokeratology (ortho-k) for myopic control. A total of 102 eligible subjects, ranging in age from 6 to 10 years, with myopia between 0.50 and 4.00 diopters (D) and astigmatism not more than 1.25D, were randomly assigned to wear ortho-k lenses or single-vision glasses for a period of 2 years. Axial length was measured by intraocular lens calculation by a masked examiner and was performed at the baseline and every 6 months. This study was registered at ClinicalTrials.gov, number NCT00962208. In all, 78 subjects (37 in ortho-k group and 41 in control group) completed the study. The average axial elongation, at the end of 2 years, were 0.36 ± 0.24 and 0.63 ± 0.26 mm in the ortho-k and control groups, respectively, and were significantly slower in the ortho-k group (P 0.54) but was correlated with the initial age of the subjects (P 1.00D per year) were 65% and 13% in younger (age range: 7-8 years) and older (age range: 9-10 years) children, respectively, in the control group and were 20% and 9%, respectively, in the ortho-k group. Five subjects discontinued ortho-k treatment due to adverse events. On average, subjects wearing ortho-k lenses had a slower increase in axial elongation by 43% compared with that of subjects wearing single-vision glasses. Younger children tended to have faster axial elongation and may benefit from early ortho-k treatment. (ClinicalTrials.gov number, NCT00962208.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The relationship between glaucoma and myopia: the Blue Mountains Eye Study.

              To quantify the relationship between myopia and open-angle glaucoma, ocular hypertension (OH), and intraocular pressure (IOP) in a representative older population. Cross-sectional population-based study of 3654 Australians 49 to 97 years of age. Subjects with any myopia (> or =-1.0 diopter [D]) were identified by a standardized subjective refraction and categorized into low myopia (> or =-1.0 D to or =-3.0 D). Glaucoma was diagnosed from characteristic visual field loss, combined with optic disc cupping and rim thinning, without reference to IOP. Ocular hypertension was diagnosed when applanation IOP was greater than 21 mmHg in either eye in the absence of glaucomatous visual field and optic disc changes. General estimating equation models were used to assess associations between eyes with myopia and either glaucoma or OH. Glaucoma was present in 4.2% of eyes with low myopia and 4.4% of eyes with moderate-to-high myopia compared to 1.5% of eyes without myopia. The relationship between glaucoma and myopia was maintained after adjusting for known glaucoma risk factors, odds ratio (OR) of 2.3, and 95% confidence intervals (CI) of 1.3 to 4.1 for low myopia. It was stronger for eyes with moderate-to-high myopia (OR, 3.3; CI, 1.7-6.4). Only a borderline relationship was found with OH, OR of 1.8 (CI, 1.2-2.9) for low myopia, and OR of 0.9 (CI, 0.4-2.0) for moderate-to-high myopia. Mean IOP was approximately 0.5 mmHg higher in myopic eyes compared to nonmyopic eyes. This study has confirmed a strong relationship between myopia and glaucoma. Myopic subjects had a twofold to threefold increased risk of glaucoma compared with that of nonmyopic subjects. The risk was independent of other glaucoma risk factors and IOP.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 August 2016
                2016
                : 11
                : 8
                : e0161535
                Affiliations
                [1 ]State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, PR China
                [2 ]Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, PR China
                [3 ]Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, PR China
                Medizinische Universitat Graz, AUSTRIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: DW RC QL CL CT.

                • Data curation: DW RC.

                • Formal analysis: DW RC RL.

                • Funding acquisition: QL CT.

                • Investigation: DW RC RL ML YS TZ.

                • Methodology: DW RC CT.

                • Project administration: DW RC.

                • Resources: QL CT.

                • Supervision: CL QL CT.

                • Validation: RC CL CT.

                • Visualization: DW RC RL.

                • Writing - original draft: DW RC.

                • Writing - review & editing: DW RC QL CT.

                Article
                PONE-D-16-11156
                10.1371/journal.pone.0161535
                4990278
                27537606
                ae42fba5-eec0-4b8e-896f-091d5c864c4d
                © 2016 Wang et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 March 2016
                : 8 August 2016
                Page count
                Figures: 3, Tables: 2, Pages: 12
                Funding
                Funded by: The Hong Kong Polytechnic University
                Award ID: GUA32, GYZ29
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100005847, Health and Medical Research Fund;
                Award ID: K-ZJHZ
                Award Recipient :
                Funded by: Henry G Leong Professorship in E
                Award ID: N/A
                Award Recipient :
                The work was supported by The Hong Kong Polytechnic University (GUA32, GYZ29), Health and Medical Research Fund(HMRF, K-ZJHZ) and Henry G Leong Professorship in Elderly Vision Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Head
                Eyes
                Medicine and Health Sciences
                Anatomy
                Head
                Eyes
                Biology and Life Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Eyes
                Biology and Life Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Choroid
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Choroid
                Biology and Life Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Lens (Anatomy)
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Lens (Anatomy)
                Medicine and Health Sciences
                Ophthalmology
                Visual Impairments
                Myopia
                People and Places
                Population Groupings
                Age Groups
                Young Adults
                People and Places
                Population Groupings
                Educational Status
                Schoolchildren
                Medicine and Health Sciences
                Diagnostic Medicine
                Diagnostic Radiology
                Tomography
                Research and Analysis Methods
                Imaging Techniques
                Diagnostic Radiology
                Tomography
                Medicine and Health Sciences
                Radiology and Imaging
                Diagnostic Radiology
                Tomography
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Flow
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Flow
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Flow
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Flow
                Medicine and Health Sciences
                Hematology
                Blood
                Blood Flow
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article