79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev.) Durieu & Mont.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200 mL (675.12 ± 5.01 and 385.20 ± 5.01 mg/L), rotation speed 150 rpm (324.62 ± 3.32 and 254.62 ± 4.62 mg/L), 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71 mg/L), pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59 mg/L), and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71 mg/L) produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62 mg/L) and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24 mg/L), respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10 : 1 (395.29 ± 2.15 and 235.62 ± 1.40 mg/L), respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%). Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Phenol Antioxidant Quantity and Quality in Foods:  Vegetables

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fungal morphology and metabolite production in submerged mycelial processes.

            The use of fungi for the production of commercial products is ancient, but it has increased rapidly over the last 50 years. Fungi are morphologically complex organisms, differing in structure at different times in their life cycle, differing in form between surface and submerged growth, differing also with the nature of the growth medium and physical environment. Many genes and physiological mechanisms are involved in the process of morphogenesis. In submerged culture, a large number of factors contribute to the development of any particular morphological form. Factors affecting morphology include the type and concentration of carbon substrate, levels of nitrogen and phosphate, trace minerals, dissolved oxygen and carbon dioxide, pH and temperature. Physical factors affecting morphology include fermenter geometry, agitation systems, rheology and the culture modes, whether batch, fed-batch or continuous. In many cases, particular morphological forms achieve maximum performance. It is a very difficult task to deduce unequivocal general relationships between process variables, product formation and fungal morphology since too many parameters influence these interrelationships and the role of many of them is still not fully understood. The use of automatic image analysis systems during the last decade proved an invaluable tool for characterizing complex mycelial morphologies, physiological states and relationships between morphology and productivity. Quantified morphological information can be used to build morphologically structured models of predictive value. The mathematical modeling of the growth and process performance has led to improved design and operation of mycelial fermentations and has improved the ability of scientists to translate laboratory observations into commercial practice. However, it is still necessary to develop improved and new experimental techniques for understanding phenomena such as the mechanisms of mycelial fragmentation and non-destructive measurement of concentration profiles in mycelial aggregates. This would allow the establishment of a process control on a physiological basis. This review is focused on the factors influencing the fungal morphology and metabolite production in submerged culture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi).

              Nowadays macrofungi are distinguished as important natural resources of immunomodulating and anticancer agents and with regard to the increase in diseases involving immune dysfunction, cancer, autoimmune conditions in recent years, applying such immunomodulator agents especially with the natural original is vital. These compounds belong mainly to polysaccharides especially beta-d-glucan derivates, glycopeptide/protein complexes (polysaccharide-peptide/protein complexes), proteoglycans, proteins and triterpenoids. Among polysaccharides, beta(1-->3)-d-glucans and their peptide/protein derivates and among proteins, fungal immunomodulatory proteins (Fips) have more important role in immunomodulating and antitumor activities. Immunomodulating and antitumor activity of these metabolites related to their effects to act of immune effecter cells such as hematpoietic stem cells, lymphocytes, macrophages, T cells, dendritic cells (DCs), and natural killer (NK) cells involved in the innate and adaptive immunity, resulting in the production of biologic response modifiers. In this review we have introduced the medicinal mushrooms' metabolites with immunomoduling and antitumor activities according to immunological evidences and then demonstrated their effects on innate and adaptive immunity and also the mechanisms of activation of immune responses and signaling cascade. In addition, their molecular structure and their relation to these activities have been shown. The important instances of these metabolites along with their immunomodulating and/or antitumor activities isolated from putative medicinal mushrooms are also introduced.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2015
                24 March 2015
                24 March 2015
                : 2015
                : 462864
                Affiliations
                1Department of Plant Pathology, CSK, Himachal Pradesh Agriculture University, Palampur 176 062, India
                2Centre for Environment Science and Technology, School of Environmental and Earth Sciences, Central University of Punjab, Bathinda 151 001, India
                3Department of Botany, Punjabi University, Patiala, Punjab 147 002, India
                Author notes

                Academic Editor: Zheng L. Jiang

                Author information
                http://orcid.org/0000-0002-2784-3441
                Article
                10.1155/2015/462864
                4387898
                ae516aad-3123-4cac-8aa2-3bed1dca13a8
                Copyright © 2015 Sapan Kumar Sharma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 November 2014
                : 18 February 2015
                : 27 February 2015
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article