11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mild MPP + exposure-induced glucose starvation enhances autophagosome synthesis and impairs its degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson’s disease (PD) is a prevalent neurodegenerative disorder, mainly characterised by the progressive loss of dopaminergic neurons. MPP + has been widely used as a PD-related neurotoxin, and their reports suggested the several hypotheses for neuronal cell death. However, most of these hypotheses come from the studies about the acute MPP + exposure. We previously revealed that mild MPP + exposure (10 and 200 μM), which induces gradual cell death, impairs autophagosome degradation at 48 h. In the present study, we further investigated the specific events of mild MPP + exposure and revealed that mild MPP + exposure causes the cell death through glucose starvation, but not acute toxic model (2.5 and 5 mM). At 36 h after mild MPP + exposure, autophagosome synthesis was enhanced owing to glucose starvation and continued to enhance until 48 h, despite impaired autophagosome degradation. Inhibition of autophagosome synthesis reduced mild MPP +-induced cell death. In conclusion, we clarified that glucose starvation-enhanced autophagosome synthesis occurs at an earlier stage than impaired autophagosome degradation and is important in mild MPP + toxicity.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Guidelines for the use and interpretation of assays for monitoring autophagy.

            In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase.

              A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                26 April 2017
                2017
                : 7
                : 46668
                Affiliations
                [1 ]Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, 734-8553, Japan
                [2 ]Global Career Design Center, Hiroshima University , Hiroshima, 739-8514, Japan
                Author notes
                Article
                srep46668
                10.1038/srep46668
                5405408
                28443637
                ae55c880-fcac-4f8b-a27b-138163a9b736
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 January 2017
                : 22 March 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article