0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Disrupting the CD95–PLCγ1 interaction prevents Th17-driven inflammation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy

            Summary: SPARKY (Goddard and Kneller, SPARKY 3) remains the most popular software program for NMR data analysis, despite the fact that development of the package by its originators ceased in 2001. We have taken over the development of this package and describe NMRFAM-SPARKY, which implements new functions reflecting advances in the biomolecular NMR field. NMRFAM-SPARKY has been repackaged with current versions of Python and Tcl/Tk, which support new tools for NMR peak simulation and graphical assignment determination. These tools, along with chemical shift predictions from the PACSY database, greatly accelerate protein side chain assignments. NMRFAM-SPARKY supports automated data format interconversion for interfacing with a variety of web servers including, PECAN , PINE, TALOS-N, CS-Rosetta, SHIFTX2 and PONDEROSA-C/S. Availability and implementation: The software package, along with binary and source codes, if desired, can be downloaded freely from http://pine.nmrfam.wisc.edu/download_packages.html. Instruction manuals and video tutorials can be found at http://www.nmrfam.wisc.edu/nmrfam-sparky-distribution.htm. Contact: whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor.

              APO-1 (Fas/CD95), a member of the tumor necrosis factor receptor superfamily, induces apoptosis upon receptor oligomerization. In a search to identify intracellular signaling molecules coupling to oligomerized APO-1, several cytotoxicity-dependent APO-1-associated proteins (CAP) were immunoprecipitated from the apoptosis-sensitive human leukemic T cell line HUT78 and the lymphoblastoid B cell line SKW6.4. CAP1-3 (27-29 kDa) and CAP4 (55 kDa), instantly detectable after the crosslinking of APO-1, were associated only with aggregated (the signaling form of APO-1) and not with monomeric APO-1. CAP1 and CAP2 were identified as serine phosphorylated MORT1/FADD. The association of CAP1-4 with APO-1 was not observed with C-terminally truncated non-signaling APO-1. In addition, CAP1 and CAP2 did not associate with an APO-1 cytoplasmic tail carrying the lprcg amino acid replacement. Moreover, no APO-1-CAP association was found in the APO-1+, anti-APO-1-resistant pre-B cell line Boe. Our data suggest that in vivo CAP1-4 are the APO-1 apoptosis-transducing molecules.
                Bookmark

                Author and article information

                Journal
                Nature Chemical Biology
                Nat Chem Biol
                Springer Nature America, Inc
                1552-4450
                1552-4469
                November 14 2018
                Article
                10.1038/s41589-018-0162-9
                30429604
                ae5b67b6-1ecb-4e98-9b7c-fd419a7e1567
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article