19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types.

      Journal of Neurochemistry
      Amino Acid Sequence, Animals, Cells, Cultured, Chickens, Circadian Rhythm, genetics, Cloning, Molecular, methods, Gene Expression Regulation, physiology, Male, Molecular Sequence Data, Pineal Gland, cytology, metabolism, RNA, Messenger, biosynthesis, Retina, Rod Opsins, isolation & purification, Xenopus laevis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its expression in retina, brain and pineal gland. Like the melanopsins identified in amphibians and mammals, chicken melanopsin is more similar to the invertebrate retinaldehyde-based photopigments than the retinaldehyde-based photopigments typically found in vertebrates. In retina, melanopsin mRNA is expressed in cells of all retinal layers. In pineal gland, expression was strong throughout the parenchyma of the gland. In brain, expression was observed in a few discrete nuclei, including the lateral septal area and medial preoptic nucleus. The retina and pineal gland showed distinct diurnal expression patterns. In pineal gland, melanopsin mRNA levels were highest at night at Zeitgeber time (ZT) 16. In contrast, transcript levels in the whole retina reached their highest levels in the early morning (ZT 0-4). Further analysis of melanopsin mRNA expression in retinal layers isolated by laser capture microdissection revealed different patterns in different layers. There was diurnal expression in all retinal layers except the ganglion cell layer, where heavy expression was localized to a small number of cells. Expression of melanopsin mRNA peaked during the daytime in the retinal pigment epithelium and inner nuclear layer but, like in the pineal, at night in the photoreceptors. Localization and regulation of melanopsin mRNA in the retina and pineal gland is consistent with the hypothesis that this novel photopigment plays a role in photic regulation of circadian function in these tissues.

          Related collections

          Author and article information

          Comments

          Comment on this article