152
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity-associated improvements in metabolic profile through expansion of adipose tissue.

          Excess caloric intake can lead to insulin resistance. The underlying reasons are complex but likely related to ectopic lipid deposition in nonadipose tissue. We hypothesized that the inability to appropriately expand subcutaneous adipose tissue may be an underlying reason for insulin resistance and beta cell failure. Mice lacking leptin while overexpressing adiponectin showed normalized glucose and insulin levels and dramatically improved glucose as well as positively affected serum triglyceride levels. Therefore, modestly increasing the levels of circulating full-length adiponectin completely rescued the diabetic phenotype in ob/ob mice. They displayed increased expression of PPARgamma target genes and a reduction in macrophage infiltration in adipose tissue and systemic inflammation. As a result, the transgenic mice were morbidly obese, with significantly higher levels of adipose tissue than their ob/ob littermates, leading to an interesting dichotomy of increased fat mass associated with improvement in insulin sensitivity. Based on these data, we propose that adiponectin acts as a peripheral "starvation" signal promoting the storage of triglycerides preferentially in adipose tissue. As a consequence, reduced triglyceride levels in the liver and muscle convey improved systemic insulin sensitivity. These mice therefore represent what we believe is a novel model of morbid obesity associated with an improved metabolic profile.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI.

            Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating "adipose tissue fibrosis" as a hallmark of metabolically challenged adipocytes. Collagen VI is a highly enriched extracellular matrix component of adipose tissue. The absence of collagen VI results in the uninhibited expansion of individual adipocytes and is paradoxically associated with substantial improvements in whole-body energy homeostasis, both with high-fat diet exposure and in the ob/ob background. Collectively, our data suggest that weakening the extracellular scaffold of adipocytes enables their stress-free expansion during states of positive energy balance, which is consequently associated with an improved inflammatory profile. Therefore, the disproportionate accumulation of extracellular matrix components in adipose tissue may not be merely an epiphenomenon of metabolically challenging conditions but may also directly contribute to a failure to expand adipose tissue mass during states of excess caloric intake.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phaeochromocytoma.

              Phaeochromocytomas are rare neuroendocrine tumours with a highly variable clinical presentation but most commonly presenting with episodes of headaches, sweating, palpitations, and hypertension. The serious and potentially lethal cardiovascular complications of these tumours are due to the potent effects of secreted catecholamines. Biochemical testing for phaeochromocytoma is indicated not only in symptomatic patients, but also in patients with adrenal incidentalomas or identified genetic predispositions (eg, multiple endocrine neoplasia type 2, von Hippel-Lindau syndrome, neurofibromatosis type 1, and mutations of the succinate dehydrogenase genes). Imaging techniques such as CT or MRI and functional ligands such as (123)I-MIBG are used to localise biochemically proven tumours. After the use of appropriate preoperative treatment to block the effects of secreted catecholamines, laparoscopic tumour removal is the preferred procedure. If removal of phaeochromocytoma is timely, prognosis is excellent. However, prognosis is poor in patients with metastases, which especially occur in patients with large, extra-adrenal tumours.
                Bookmark

                Author and article information

                Contributors
                vp332@medschl.cam.ac.uk
                ajv22@medschl.cam.ac.uk
                Journal
                Diabetologia
                Diabetologia
                Diabetologia
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0012-186X
                1432-0428
                4 April 2016
                4 April 2016
                2016
                : 59
                : 1075-1088
                Affiliations
                [ ]University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 OQQ UK
                [ ]Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
                Article
                3933
                10.1007/s00125-016-3933-4
                4861754
                27039901
                ae625fa7-ef13-436f-bdcf-a7545eb21155
                © The Author(s) 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 November 2015
                : 23 February 2016
                Categories
                Review
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Endocrinology & Diabetes
                adipogenesis,adipose tissue,development,fibrosis,inflammation,obesity,plasticity,review,tissue remodelling,type 2 diabetes

                Comments

                Comment on this article