8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GDNF Gene Therapy to Repair the Injured Peripheral Nerve

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A spinal root avulsion is the most severe proximal peripheral nerve lesion possible. Avulsion of ventral root filaments disconnects spinal motoneurons from their target muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve repair, axonal regeneration is a slow process. It takes months or even years to bridge the distance from the lesion site to the distal targets located in the forearm. Following ventral root avulsion, without additional pharmacological or surgical treatments, progressive death of motoneurons occurs within 2 weeks ( Koliatsos et al., 1994). Reimplantation of the avulsed ventral root or peripheral nerve graft can act as a conduit for regenerating axons and increases motoneuron survival ( Chai et al., 2000). However, this beneficial effect is transient. Combined with protracted and poor long-distance axonal regeneration, this results in permanent function loss. To overcome motoneuron death and improve functional recovery, several promising intervention strategies are being developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy is a powerful strategy to promote long-term motoneuron survival and improve function when target muscle reinnervation occurs within a critical post-lesion period. Based upon these observations, we discuss the influence of timing of the intervention, and of the duration, concentration and location of GDNF delivery on functional outcome. Finally, we provide a perspective on future research directions to realize functional recovery using gene therapy.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems

          Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1×1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1×1012 vg AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust co-transduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell type-specific promoters, these AAVs provide targeted gene expression across the nervous system and enable efficient and versatile gene manipulation throughout the nervous system of transgenic and non-transgenic animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The repair Schwann cell and its function in regenerating nerves

            Abstract Nerve injury triggers the conversion of myelin and non‐myelin (Remak) Schwann cells to a cell phenotype specialized to promote repair. Distal to damage, these repair Schwann cells provide the necessary signals and spatial cues for the survival of injured neurons, axonal regeneration and target reinnervation. The conversion to repair Schwann cells involves de‐differentiation together with alternative differentiation, or activation, a combination that is typical of cell type conversions often referred to as (direct or lineage) reprogramming. Thus, injury‐induced Schwann cell reprogramming involves down‐regulation of myelin genes combined with activation of a set of repair‐supportive features, including up‐regulation of trophic factors, elevation of cytokines as part of the innate immune response, myelin clearance by activation of myelin autophagy in Schwann cells and macrophage recruitment, and the formation of regeneration tracks, Bungner's bands, for directing axons to their targets. This repair programme is controlled transcriptionally by mechanisms involving the transcription factor c‐Jun, which is rapidly up‐regulated in Schwann cells after injury. In the absence of c‐Jun, damage results in the formation of a dysfunctional repair cell, neuronal death and failure of functional recovery. c‐Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non‐myelin (Remak) Schwann cells to repair cells after injury. In future, the signalling that specifies this cell requires further analysis so that pharmacological tools that boost and maintain the repair Schwann cell phenotype can be developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity.

              Regulatory elements that control tetracycline resistance in Escherichia coli were previously converted into highly specific transcription regulation systems that function in a wide variety of eukaryotic cells. One tetracycline repressor (TetR) mutant gave rise to rtTA, a tetracycline-controlled transactivator that requires doxycycline (Dox) for binding to tet operators and thus for the activation of P(tet) promoters. Despite the intriguing properties of rtTA, its use was limited, particularly in transgenic animals, because of its relatively inefficient inducibility by doxycycline in some organs, its instability, and its residual affinity to tetO in absence of Dox, leading to elevated background activities of the target promoter. To remove these limitations, we have mutagenized tTA DNA and selected in Saccharomyces cerevisiae for rtTA mutants with reduced basal activity and increased Dox sensitivity. Five new rtTAs were identified, of which two have greatly improved properties. The most promising new transactivator, rtTA2(S)-M2, functions at a 10-fold lower Dox concentration than rtTA, is more stable in eukaryotic cells, and causes no background expression in the absence of Dox. The coding sequences of the new reverse TetR mutants fused to minimal activation domains were optimized for expression in human cells and synthesized. The resulting transactivators allow stringent regulation of target genes over a range of 4 to 5 orders of magnitude in stably transfected HeLa cells. These rtTA versions combine tightness of expression control with a broad regulatory range, as previously shown for the widely applied tTA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                30 October 2020
                2020
                : 8
                : 583184
                Affiliations
                [1] 1Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences , Amsterdam, Netherlands
                [2] 2Department of Neurology, Leiden University Medical Center , Leiden, Netherlands
                [3] 3Department of Neurosurgery, Leiden University Medical Center , Leiden, Netherlands
                [4] 4Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                Author notes

                Edited by: Xavier Navarro, Autonomous University of Barcelona, Spain

                Reviewed by: Antal Nógrádi, University of Szeged, Hungary; Alexandre Leite Rodrigues Oliveira, Campinas State University, Brazil

                *Correspondence: Ruben Eggers, r.eggers@ 123456nin.knaw.nl

                This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.583184
                7673415
                33251197
                ae645784-d124-43c1-bdf6-032e8eb9c65f
                Copyright © 2020 Eggers, de Winter, Tannemaat, Malessy and Verhaagen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 July 2020
                : 12 October 2020
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 105, Pages: 10, Words: 0
                Funding
                Funded by: Wings for Life 10.13039/100008191
                Award ID: WFL-NL-25/20
                Funded by: International Spinal Research Trust 10.13039/501100000334
                Categories
                Bioengineering and Biotechnology
                Mini Review

                gene therapy,peripheral nerve injury,nerve regeneration,ventral root avulsion,axonal regeneration

                Comments

                Comment on this article