17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New View of Alcohol Metabolism and Alcoholism—Role of the High- K m Class III Alcohol Dehydrogenase (ADH3)

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The conventional view is that alcohol metabolism is carried out by ADH1 (Class I) in the liver. However, it has been suggested that another pathway plays an important role in alcohol metabolism, especially when the level of blood ethanol is high or when drinking is chronic. Over the past three decades, vigorous attempts to identify the enzyme responsible for the non-ADH1 pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. Recently, using ADH3-null mutant mice, we demonstrated that ADH3 (Class III), which has a high K m and is a ubiquitous enzyme of ancient origin, contributes to systemic alcohol metabolism in a dose-dependent manner, thereby diminishing acute alcohol intoxication. Although the activity of ADH3 toward ethanol is usually low in vitro due to its very high K m , the catalytic efficiency ( k cat / K m ) is markedly enhanced when the solution hydrophobicity of the reaction medium increases. Activation of ADH3 by increasing hydrophobicity should also occur in liver cells; a cytoplasmic solution of mouse liver cells was shown to be much more hydrophobic than a buffer solution when using Nile red as a hydrophobicity probe. When various doses of ethanol are administered to mice, liver ADH3 activity is dynamically regulated through induction or kinetic activation, while ADH1 activity is markedly lower at high doses (3–5 g/kg). These data suggest that ADH3 plays a dynamic role in alcohol metabolism, either collaborating with ADH1 or compensating for the reduced role of ADH1. A complex two-ADH model that ascribes total liver ADH activity to both ADH1 and ADH3 explains the dose-dependent changes in the pharmacokinetic parameters (β, CL T, AUC) of blood ethanol very well, suggesting that alcohol metabolism in mice is primarily governed by these two ADHs. In patients with alcoholic liver disease, liver ADH3 activity increases, while ADH1 activity decreases, as alcohol intake increases. Furthermore, ADH3 is induced in damaged cells that have greater hydrophobicity, whereas ADH1 activity is lower when there is severe liver disease. These data suggest that chronic binge drinking and the resulting liver disease shifts the key enzyme in alcohol metabolism from low- K m ADH1 to high- K m ADH3, thereby reducing the rate of alcohol metabolism. The interdependent increase in the ADH3/ADH1 activity ratio and AUC may be a factor in the development of alcoholic liver disease. However, the adaptive increase in ADH3 sustains alcohol metabolism, even in patients with alcoholic liver cirrhosis, which makes it possible for them to drink themselves to death. Thus, the regulation of ADH3 activity may be important in preventing alcoholism development.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome.

            Retinoic acid (RA) is known to act as a signaling molecule during embryonic development, but little is known about the regulation of RA synthesis from retinol. The rate-limiting step in RA synthesis is the oxidation of retinol, a reaction that can be catalyzed by alcohol dehydrogenase (ADH). Ethanol is also a substrate for ADH, and high levels of ethanol inhibit ADH-catalyzed retinol oxidation. This has prompted us to hypothesize that ethanol-induced defects observed in fetal alcohol syndrome involve ethanol inhibition of ADH-catalyzed RA synthesis. Here, we have examined the effect of ethanol on RA levels in cultured mouse embryos by using a bioassay. Treatment with 100 mM ethanol, but no 10 mM, led to a significant decrease in RA detection in 7.5-day-old embryos. Using whole-mount in situ hybridization, we detected mRNA for class IV ADH, but not ethanol-active cytochrome P450 2E1, in 7.5- and 8.5-day-old embryos, indicating that an ADH-linked pathway exists at these stages for metabolizing retinol and ethanol. Thus, the observed ethanol-induced reduction in RA may be caused by ethanol inhibition of retinol oxidation catalyzed by class IV ADH. In our postulated mechanism for fetal alcohol syndrome, this enzyme may well play a crucial role.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

              The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares 80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                101238455
                International Journal of Environmental Research and Public Health
                Molecular Diversity Preservation International (MDPI)
                1661-7827
                1660-4601
                March 2010
                15 March 2010
                : 7
                : 3
                : 1076-1092
                Affiliations
                Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; E-Mail: ohno@ 123456nms.ac.jp
                Author notes
                [* ] Author to whom correspondence should be addressed: E-Mail: hasebat@ 123456nms.ac.jp ; Tel.: +81-03-3822; Fax: +81-03-5814-5680.
                Article
                ijerph-07-01076
                10.3390/ijerph7031076
                2872310
                20617019
                ae67d472-abcd-4326-bbf4-94cb5ff8ae5f
                © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 4 January 2010
                : 12 February 2010
                : 22 February 2010
                Categories
                Review

                Public health
                role shift,enzyme regulation,adh1,contribution to alcohol metabolism,adh3,alcoholic liver disease

                Comments

                Comment on this article