12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Low-dimensional semiconductor nanostructures are of great interest in high performance electronic and photonic devices. ZnO is considered to be a multifunctional material due to its unique properties with potential in various applications. In this work, 3-nm ZnO nanoislands are deposited by Atomic Layer Deposition (ALD) and the electronic properties are characterized by UV-Vis-NIR Spectrophotometer and X-ray Photoelectron Spectroscopy. The results show that the nanostructures show quantum confinement effects in 1D. Moreover, Metal-Oxide-Semiconductor Capacitor (MOSCAP) charge trapping memory devices with ZnO nanoislands charge storage layer are fabricated by a single ALD step and their performances are analyzed. The devices showed a large memory window at low operating voltages with excellent retention and endurance characteristics due to the additional oxygen vacancies in the nanoislands and the deep barrier for the trapped holes due to the reduction in ZnO electron affinity. The results show that the ZnO nanoislands are promising in future low power memory applications.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Atomic layer deposition chemistry: recent developments and future challenges.

          New materials, namely high-k (high-permittivity) dielectrics to replace SiO(2), Cu to replace Al, and barrier materials for Cu, are revolutionizing modern integrated circuits. These materials must be deposited as very thin films on structured surfaces. The self-limiting growth mechanism characteristic to atomic layer deposition (ALD) facilitates the control of film thickness at the atomic level and allows deposition on large and complex surfaces. These features make ALD a very promising technique for future integrated circuits. Recent ALD research has mainly focused on materials required in microelectronics. Chemistry, in particular the selection of suitable precursor combinations, is the key issue in ALD; many interesting results have been obtained by smart chemistry. ALD is also likely to find applications in other areas, such as magnetic recording heads, optics, demanding protective coatings, and micro-electromechanical systems, provided that cost-effective processes can be found for the materials required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene.

            Highly photoactive, graphene-wrapped anatase TiO(2) nanoparticles are synthesized through one-step hydrothermal reduction of graphene oxide (GO) and TiO(2) crystallization from GO-wrapped amorphous TiO(2) NPs. Graphene-TiO(2) nanoparticles exhibit a red-shift of the band-edge and a significant reduction of the bandgap (2.80 eV). Graphene-TiO(2) nanoparticles possess excellent photocatalytic properties under visible light for the degradation of methylene blue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Scaling of the Droplet-Size Distribution in Vapor-Deposited Thin Films

              Family, Meakin (1988)
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                19 December 2016
                2016
                : 6
                : 38712
                Affiliations
                [1 ]Institute Center for Microsystems – iMicro, EECS, Masdar Institute of Science and Technology Abu Dhabi , United Arab Emirates
                [2 ]Institute of Materials Science and Nanotechnology, Bilkent University , 06800 Ankara, Turkey
                [3 ]UNAM-National Nanotechnology Research Center, Bilkent University , 06800 Ankara, Turkey
                [4 ]Department of Electrical and Electronics Engineering, Bilkent University , 06800 Ankara, Turkey
                Author notes
                Article
                srep38712
                10.1038/srep38712
                5171791
                27991492
                ae6a36b0-b40b-4c4b-b5a2-ac43de1ae723
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 March 2016
                : 15 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article